Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sweetgum tree could help lessen shortage of bird flu drug

30.03.2006
The sweetgum tree grows widely throughout the country and is known for its mace-like green fruit, which are sometimes called "gumballs." Now, this spiny fruit may become an important source of a chemical needed to make a lifesaving drug against bird flu — a drug that is currently in short supply worldwide, researchers say.

Chemists have found that the seeds of the sweetgum fruit contain significant amounts of shikimic acid, the starting material used to produce the main antiviral agent in a much-heralded drug for fighting bird flu. Their findings, which could help increase the global supply of the drug, were described today at the 231st national meeting of the American Chemical Society, the world’s largest scientific society.

Shikimic acid is used to make a generic drug called oseltamivir — best known commercially as Tamiflu® — which is used to fight many types of flu viruses. Some health experts believe that this and similar antiviral drugs could help save lives by slowing the spread of the virus in the absence of a bird flu vaccine, which is still in development.

The drug, which blocks the replication of the flu virus, is being stockpiled worldwide to slow or stop a possible bird flu pandemic that some experts predict could kill millions — if the virus mutates into a form that can spread from person to person. The virus, a strain known as H5N1, primarily afflicts birds at present but has been known to kill a small but growing number of humans who have had close contact with infected birds.

There is a skyrocketing demand for Tamiflu, but some experts fear there won’t be enough of the drug to treat everyone if a worldwide pandemic occurs. The supply problem resides in the drug’s source: The shikimic acid used to make it is obtained almost exclusively from the Chinese star anise, a fruit that is found mainly in China and whose supply has dwindled due to high demand for the flu drug. Although shikimic acid is found in many plants, star anise has been considered the most abundant plant source, until now.

"Our work gives the hearty sweetgum tree another purpose, one that may help to alleviate the worldwide shortage of shikimic acid," says study leader Thomas Poon, Ph.D., a professor of chemistry from the W.M. Keck Science Center at The Claremont Colleges in Claremont, Calif. "They have lots of potential for fighting bird flu."

The sweetgum tree grows widely throughout the United States and other parts of the world. In this country, it is particularly common in the South, including the Carolinas, Georgia and Alabama, but also can be found as far west as Missouri, Arkansas and Oklahoma and northward in parts of Illinois.

Although shikimic acid is found in the leaves and bark of the tree, it is most abundant in the fruit, Poon says. In the mature tree, the fruit emerges as a green seedpod that later dries into a brown, spiny husk, which releases an abundance of tiny, grain-like seeds. To optimize shikimic acid extraction, the gumballs need to be harvested when they are still green and before the seeds have been dispersed, Poon says. Each tree can hold hundreds, if not thousands, of seedpods.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>