Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sweetgum tree could help lessen shortage of bird flu drug

30.03.2006
The sweetgum tree grows widely throughout the country and is known for its mace-like green fruit, which are sometimes called "gumballs." Now, this spiny fruit may become an important source of a chemical needed to make a lifesaving drug against bird flu — a drug that is currently in short supply worldwide, researchers say.

Chemists have found that the seeds of the sweetgum fruit contain significant amounts of shikimic acid, the starting material used to produce the main antiviral agent in a much-heralded drug for fighting bird flu. Their findings, which could help increase the global supply of the drug, were described today at the 231st national meeting of the American Chemical Society, the world’s largest scientific society.

Shikimic acid is used to make a generic drug called oseltamivir — best known commercially as Tamiflu® — which is used to fight many types of flu viruses. Some health experts believe that this and similar antiviral drugs could help save lives by slowing the spread of the virus in the absence of a bird flu vaccine, which is still in development.

The drug, which blocks the replication of the flu virus, is being stockpiled worldwide to slow or stop a possible bird flu pandemic that some experts predict could kill millions — if the virus mutates into a form that can spread from person to person. The virus, a strain known as H5N1, primarily afflicts birds at present but has been known to kill a small but growing number of humans who have had close contact with infected birds.

There is a skyrocketing demand for Tamiflu, but some experts fear there won’t be enough of the drug to treat everyone if a worldwide pandemic occurs. The supply problem resides in the drug’s source: The shikimic acid used to make it is obtained almost exclusively from the Chinese star anise, a fruit that is found mainly in China and whose supply has dwindled due to high demand for the flu drug. Although shikimic acid is found in many plants, star anise has been considered the most abundant plant source, until now.

"Our work gives the hearty sweetgum tree another purpose, one that may help to alleviate the worldwide shortage of shikimic acid," says study leader Thomas Poon, Ph.D., a professor of chemistry from the W.M. Keck Science Center at The Claremont Colleges in Claremont, Calif. "They have lots of potential for fighting bird flu."

The sweetgum tree grows widely throughout the United States and other parts of the world. In this country, it is particularly common in the South, including the Carolinas, Georgia and Alabama, but also can be found as far west as Missouri, Arkansas and Oklahoma and northward in parts of Illinois.

Although shikimic acid is found in the leaves and bark of the tree, it is most abundant in the fruit, Poon says. In the mature tree, the fruit emerges as a green seedpod that later dries into a brown, spiny husk, which releases an abundance of tiny, grain-like seeds. To optimize shikimic acid extraction, the gumballs need to be harvested when they are still green and before the seeds have been dispersed, Poon says. Each tree can hold hundreds, if not thousands, of seedpods.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>