Resistance is futile: making drugs from bugs

Led by Professor Tony Maxwell of the John Innes Centre (Norwich, UK) [1] and Professor Lutz Heide of the Pharmazeutisches Institut, Tübingen (Germany) [2], the team has developed ways of engineering harmless soil bacteria called Streptomyces to do the difficult chemistry for them. Streptomyces naturally make antibiotics to kill other bacteria in the soil. Unfortunately these don’t make very good drugs for use in humans because they are not very soluble in water and so cannot get into the bloodstream easily. The researchers have found a way to modify the bacteria to manufacture new varieties of these antibiotics that could be developed into more effective drugs. By studying variations of two natural antibiotics produced by Streptomyces, called novobiocin and clorobiocin, the scientists are determining which parts of the molecules are essential for their antibacterial activity. They hope that by varying other parts of the molecules they can design new antibiotics with better activity and fewer side effects.

Novobiocin and clorobiocin work by interfering with how DNA, the molecule that stores genetic information, is packed into the bacterial cell. The DNA in human cells is packed differently and so these cells are not affected by the antibiotics.

“This work is an excellent example of the European Union [3] at its best, combining the forces of seven labs from five different member states to carry out work that would not be possible by in lab working alone” said Tony Maxwell “We are very optimistic that we can make key discoveries about these antibiotics that will help them become vital weapons in our fight against MRSA and other bacterial infections”.

This exciting work is published this week in the journal Antimicrobial Agents and Chemotherapy [4] and will also be discussed at an event in Norwich as part of the BA Festival of Science in September 2006 [5].

Notes:

1.The John Innes Centre (JIC), Norwich, UK is an independent, world-leading research centre in plant and microbial sciences. The JIC has over 800 staff and students. JIC carries out high quality fundamental, strategic and applied research to understand how plants and microbes work at the molecular, cellular and genetic levels. The JIC also trains scientists and students, collaborates with many other research laboratories and communicates its science to end-users and the general public. www.jic.ac.uk. he JIC is grant-aided by the Biotechnology and Biological Sciences Research Council.

2.Pharmazeutisches Institut, Auf der Morgenstelle 8, D-72076 Tübingen, Germany. Tel.: +49 7071-29 72460

3.This work is published in the journal Antimicrobial Agents and Chemotherapy (Volume 50, issue 4) (Publishers: American Society for Microbiology).

4.This work was funded by a grant from the European Commission (Combigyrase LSHB-CT-2004-503466).

5.The BA (British Association for the Advancement of Science) Annual Festival of Science runs from 2nd-9th September 2006 in Norwich, and is the biggest public science event in the UK. It is expected to attract over 10,000 people from around the world with the theme of “People, Science and Society”.

Media Contact

Professor Tony Maxwell alfa

More Information:

http://www.jic.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Combatting disruptive ‘noise’ in quantum communication

In a significant milestone for quantum communication technology, an experiment has demonstrated how networks can be leveraged to combat disruptive ‘noise’ in quantum communications. The international effort led by researchers…

Stretchable quantum dot display

Intrinsically stretchable quantum dot-based light-emitting diodes achieved record-breaking performance. A team of South Korean scientists led by Professor KIM Dae-Hyeong of the Center for Nanoparticle Research within the Institute for…

Internet can achieve quantum speed with light saved as sound

Researchers at the University of Copenhagen’s Niels Bohr Institute have developed a new way to create quantum memory: A small drum can store data sent with light in its sonic…

Partners & Sponsors