Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Resistance is futile: making drugs from bugs

Antibiotic resistance is a major problem worldwide and there is an urgent need for new antibiotics to be developed. Potential new drugs are usually made in the lab which is complicated and time-consuming. An international team of scientists are using bacteria found naturally in the soil to produce new antibiotics in the fight against drug-resistant “Super-bugs” such as MRSA.

Led by Professor Tony Maxwell of the John Innes Centre (Norwich, UK) [1] and Professor Lutz Heide of the Pharmazeutisches Institut, Tübingen (Germany) [2], the team has developed ways of engineering harmless soil bacteria called Streptomyces to do the difficult chemistry for them. Streptomyces naturally make antibiotics to kill other bacteria in the soil. Unfortunately these don’t make very good drugs for use in humans because they are not very soluble in water and so cannot get into the bloodstream easily. The researchers have found a way to modify the bacteria to manufacture new varieties of these antibiotics that could be developed into more effective drugs. By studying variations of two natural antibiotics produced by Streptomyces, called novobiocin and clorobiocin, the scientists are determining which parts of the molecules are essential for their antibacterial activity. They hope that by varying other parts of the molecules they can design new antibiotics with better activity and fewer side effects.

Novobiocin and clorobiocin work by interfering with how DNA, the molecule that stores genetic information, is packed into the bacterial cell. The DNA in human cells is packed differently and so these cells are not affected by the antibiotics.

“This work is an excellent example of the European Union [3] at its best, combining the forces of seven labs from five different member states to carry out work that would not be possible by in lab working alone” said Tony Maxwell “We are very optimistic that we can make key discoveries about these antibiotics that will help them become vital weapons in our fight against MRSA and other bacterial infections”.

This exciting work is published this week in the journal Antimicrobial Agents and Chemotherapy [4] and will also be discussed at an event in Norwich as part of the BA Festival of Science in September 2006 [5].


1.The John Innes Centre (JIC), Norwich, UK is an independent, world-leading research centre in plant and microbial sciences. The JIC has over 800 staff and students. JIC carries out high quality fundamental, strategic and applied research to understand how plants and microbes work at the molecular, cellular and genetic levels. The JIC also trains scientists and students, collaborates with many other research laboratories and communicates its science to end-users and the general public. he JIC is grant-aided by the Biotechnology and Biological Sciences Research Council.

2.Pharmazeutisches Institut, Auf der Morgenstelle 8, D-72076 Tübingen, Germany. Tel.: +49 7071-29 72460

3.This work is published in the journal Antimicrobial Agents and Chemotherapy (Volume 50, issue 4) (Publishers: American Society for Microbiology).

4.This work was funded by a grant from the European Commission (Combigyrase LSHB-CT-2004-503466).

5.The BA (British Association for the Advancement of Science) Annual Festival of Science runs from 2nd-9th September 2006 in Norwich, and is the biggest public science event in the UK. It is expected to attract over 10,000 people from around the world with the theme of “People, Science and Society”.

Professor Tony Maxwell | alfa
Further information:

More articles from Life Sciences:

nachricht How Does Friendly Fire Happen in the Pancreas?
21.10.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>