Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Resistance is futile: making drugs from bugs

30.03.2006
Antibiotic resistance is a major problem worldwide and there is an urgent need for new antibiotics to be developed. Potential new drugs are usually made in the lab which is complicated and time-consuming. An international team of scientists are using bacteria found naturally in the soil to produce new antibiotics in the fight against drug-resistant “Super-bugs” such as MRSA.

Led by Professor Tony Maxwell of the John Innes Centre (Norwich, UK) [1] and Professor Lutz Heide of the Pharmazeutisches Institut, Tübingen (Germany) [2], the team has developed ways of engineering harmless soil bacteria called Streptomyces to do the difficult chemistry for them. Streptomyces naturally make antibiotics to kill other bacteria in the soil. Unfortunately these don’t make very good drugs for use in humans because they are not very soluble in water and so cannot get into the bloodstream easily. The researchers have found a way to modify the bacteria to manufacture new varieties of these antibiotics that could be developed into more effective drugs. By studying variations of two natural antibiotics produced by Streptomyces, called novobiocin and clorobiocin, the scientists are determining which parts of the molecules are essential for their antibacterial activity. They hope that by varying other parts of the molecules they can design new antibiotics with better activity and fewer side effects.

Novobiocin and clorobiocin work by interfering with how DNA, the molecule that stores genetic information, is packed into the bacterial cell. The DNA in human cells is packed differently and so these cells are not affected by the antibiotics.

“This work is an excellent example of the European Union [3] at its best, combining the forces of seven labs from five different member states to carry out work that would not be possible by in lab working alone” said Tony Maxwell “We are very optimistic that we can make key discoveries about these antibiotics that will help them become vital weapons in our fight against MRSA and other bacterial infections”.

This exciting work is published this week in the journal Antimicrobial Agents and Chemotherapy [4] and will also be discussed at an event in Norwich as part of the BA Festival of Science in September 2006 [5].

Notes:

1.The John Innes Centre (JIC), Norwich, UK is an independent, world-leading research centre in plant and microbial sciences. The JIC has over 800 staff and students. JIC carries out high quality fundamental, strategic and applied research to understand how plants and microbes work at the molecular, cellular and genetic levels. The JIC also trains scientists and students, collaborates with many other research laboratories and communicates its science to end-users and the general public. www.jic.ac.uk. he JIC is grant-aided by the Biotechnology and Biological Sciences Research Council.

2.Pharmazeutisches Institut, Auf der Morgenstelle 8, D-72076 Tübingen, Germany. Tel.: +49 7071-29 72460

3.This work is published in the journal Antimicrobial Agents and Chemotherapy (Volume 50, issue 4) (Publishers: American Society for Microbiology).

4.This work was funded by a grant from the European Commission (Combigyrase LSHB-CT-2004-503466).

5.The BA (British Association for the Advancement of Science) Annual Festival of Science runs from 2nd-9th September 2006 in Norwich, and is the biggest public science event in the UK. It is expected to attract over 10,000 people from around the world with the theme of “People, Science and Society”.

Professor Tony Maxwell | alfa
Further information:
http://www.jic.ac.uk

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>