Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover New Gene Responsible for Spread of Cancer

30.03.2006
Scientists at the University of Liverpool have identified a new gene that causes the spread of cancer.

Professor Philip Rudland, Dr Guozheng Wang and Dr Roger Barraclough from the University’s Cancer and Polio Research Fund Laboratories have discovered an additional member of the S100 family of protein genes – S100P – that causes the spread of cancerous cells from an original tumour to other parts of the body.

If present in the primary tumour, metastagenes such as S100P trigger the rapid spread of cancerous secondary tumours to other tissues in the body via the bloodstream – a process known as metastasis. Although primary tumours can be removed surgically, secondary tumours are more difficult to control. This research has been funded by the Cancer and Polio Research Fund.

The new discovery builds on several years’ work carried out at the University to investigate the genes that cause cancerous tumours to travel to other tissues in the body. To date, three other metastasis-inducing genes have been discovered – S100A4, osteopontin, and more recently, AGR2.

Chemotherapy and radiotherapy are often the only options available to treat secondary tumours but these procedures can be problematic to the patient as they can damage other healthy tissue and do not always succeed in eradicating the cancer.

S100P is commonly found in ten different types of normal tissue including the placenta, spleen, colon, ovary, prostate, lung and heart. Scientists believe proteins like S100P function in healthy tissue by increasing the movement of white blood cells around the body. If the protein is found in a cancerous tumour however, it causes the tumour to spread to other tissues.

Professor Rudland said: “It is the spread of cancer from the initial tumour that is the key contributor to death of a cancer patient. Metastagenes are fundamental to this process and can be found in most common cancers, including breast, lung and colon. If these genes are over-expressed in the cancerous tumour, early death of the patient is much more likely.

“The next major step is to develop drugs that will switch off the action of these genes. If we can do this, we can stop the spread of the primary tumour and therefore improve the chances of survival for patients.

“We are grateful for the support given by the Cancer and Polio Research Fund.”

The research is published in the current edition of Cancer Research.

Joanna Robotham | alfa
Further information:
http://www.liv.ac.uk

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>