Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon nanotube absorption measured in worms, cancer cells

29.03.2006
University of Michigan researchers have discovered how to measure the absorption of multi-walled carbon nanoparticles into worms and cancer cells, a breakthrough that will revolutionize scientists’ understanding of how the particles impact the living environment.

A team led by U-M chemical engineering professor Walter J. Weber Jr. tagged multi-walled carbon nanotubes—one of the most promising nanomaterials developed to date—with the carbon-14 radioactive isotope, which enabled the nanotubes to be tracked and quantified as they were absorbed into living cells. Researchers used cancer cells called HeLa cells, and also measured nanotube uptake in an earthworm and an aquatic type of worm.

The findings were presented Sunday at the 231st American Chemical Society National Meeting in Atlanta. Co-authors of the presentation are graduate student Elijah Petersen and postdoctoral research assistant Qingguo Huang.

Carbon nanotubes were discovered in 1991, and hold great promise in several areas, including pharmacology and for hydrogen storage in fuel cells, Weber said. But despite their promise, a big problem is that it’s not known how multi-walled carbon nanotubes will impact the living environment, Weber said.

"While everyone is concerned about this issue, there has been no really adequate way before this development to examine the extent to which they may get into human cells, and what will result if they do," Weber said. "Nobody has been able to do quantitative research on this because no method to measure them has existed until now. We were able to detect them, but had no way to determine how much was there."

In tagging the nanotubes with the isotope, researchers found that about 74 percent of the nanotubes added to a culture of cancer cells were assimilated by the cells after 15 minutes, and 89 percent of nanotubes assimilated after six hours, according to the paper. And the uptake was nearly irreversible, with only about 0.5 percent of the nanotubes releases from the cell after 12 hours.

It’s important to understand if and how the multi-walled carbon nanotubes accumulate in living cells, because before the materials can become widely used in society scientists must understand if they’ll pass through the food webs and possibly threaten the health of ecosystems and lead to uptake by humans, Petersen said.

"This approach has virtually limitless potential for facilitating important future investigations of the behaviors of carbon nanotubes in environmental and biomedical applications," Petersen said.

More information on Prof. Weber.

The University of Michigan College of Engineering is ranked among the top engineering schools in the country. Michigan Engineering boasts one of the largest engineering research budgets of any public university, at $135 million for 2004. Michigan Engineering has 11 departments and two NSF Engineering Research Centers. Within those departments and centers, there is a special emphasis on research in three emerging areas: nanotechnology and integrated microsystems; cellular and molecular biotechnology; and information technology. Michigan Engineering is seeking to raise $110 million for capital building projects and program support in these areas to further research discovery. Michigan Engineering’s goal is to advance academic scholarship and market cutting edge research to improve public health and well-being.

Laura Bailey | EurekAlert!
Further information:
http://www.engin.umich.edu
http://www.umich.edu

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Spinning rugby balls: The rotation of the most massive galaxies

23.05.2018 | Physics and Astronomy

Raiding the rape field

23.05.2018 | Agricultural and Forestry Science

Turning entanglement upside down

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>