Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


"Bad" Enzymes May Wear White Hats After Stroke

Enzymes that can harm the brain immediately after a stroke may actually be beneficial days later, according to new research. Insights from the study could change the way stroke is treated, extending the window for effective treatment from a couple of hours to a couple of weeks. The results may suggest new ideas for drug development.

Working with rats, a team from the Harvard Medical School Departments of Radiology and Neurology found that the enzyme matrix metalloproteinase-9 (MMP-9) may help remodel brain tissue seven to 14 days after a stroke. Their findings are published in the April 2006 issue of Nature Medicine, and were made available in an advance online publication on March 26, 2006.

MMP-9, stained green, with markers of neurovascular remodeling (in red).

Matrix metalloproteinases are a large group of enzymes that help break down the extracellular matrix, a complex structure that surrounds and supports cells. Newer research is showing that MMPs may also contribute to blood vessel growth, as well as the death, proliferation, differentiation, and movement of cells.

Sophia Wang, who was a Howard Hughes Medical Institute (HHMI) medical student fellow at Harvard Medical School, is second author of the article. She was deeply involved with the study’s data analysis, and established a way to quantify the response of proteins involved in the cell growth and blood vessel remodeling that occurs after stroke. She also assisted with behavioral studies of rats that had received MMPs to see how well they recovered after a stroke.

HHMI medical student fellows are medical students who are interested in biomedical research. The fellowships support a year of research, usually between the second and third years of medical school. The program is designed to encourage medical students to become physician-scientists.

Just after a stroke—a temporary loss of blood to the brain caused by a clot or burst blood vessel—MMPs chew up damaged brain tissue. This increases the risk of swelling and hemorrhage in the brain. Some current stroke treatment research seeks ways to inhibit MMPs to minimize their danger—but this new study shows that a different approach may be required in the long run.

"We have mostly thought of MMPs as being ’bad,’" said senior author Eng H. Lo of the Neuroprotection Research Laboratory at Massachusetts General Hospital, Wang’s mentor. "Our data strongly suggest that they play a totally different role during stroke recovery."

To understand the action of MMPs, the team induced stroke in rats and injected some with an MMP inhibitor at different times after the stroke. When the injection was given immediately following the stroke, rats showed smaller areas of brain damage. Injections given at three days had no effect, but those given at seven days or 14 days led to more extensive brain damage, compared with rats that did not receive an inhibitor.

The team also looked for MMPs within the brains of rats following stroke. They found the enzymes in the damaged areas at one and three days after the stroke. However, seven to 14 days after the stroke, high levels of MMPs were found instead in what’s known as the peri-infarct cortex—an area close to the damaged tissue that is involved in stroke recovery.

"The peri-infarct zone is very dynamic and potentially very malleable for long periods of time after stroke," said Lo. "I think that makes a big difference in how we think about treatment.

"One of the biggest problems facing stroke patients is that it’s a neurodegenerative disorder, but also a medical emergency," he explained. "With other neurological disorders, such as Alzheimer’s disease, the disease process is much slower. This study suggests that with stroke, we may now be able to think beyond acute treatment times of just a few hours, and find ways of manipulating peri-infarct recovery over several weeks."

Currently, the only FDA-approved drug for treating stroke—tissue plasminogen activator, or tPA—must be given within three hours after a stroke occurs. Otherwise, said Lo, the drug can amplify the "bad" effects of MMPs, increasing the risk of swelling and bleeding.

To further establish MMPs’ role in healing stroke damage, first author Bing-Qiao Zhao used two naturally occurring proteins as markers for neurovascular remodeling. He had the group look for Egr1 and RECA-1, both of which indicate neuron and blood vessel regrowth. Rats that received an MMP inhibitor seven days after stroke had much lower levels of these proteins, indicating impaired healing. These rats also had more problems completing a behavioral task than rats that did not receive an MMP inhibitor.

While current efforts to design MMP-targeted drugs aim to inhibit the enzymes completely after a stroke, the researchers caution that, based on their findings, it may be necessary to regulate the activity of MMPs much more precisely to enable the patient’s optimal recovery.

During nine months in Lo’s lab, Wang also conducted research involving MMPs, statins, and Alzheimer’s disease. Statins are a class of drugs that reduce serum cholesterol levels.

"I did some work suggesting that statins might counteract the hemorrhagic effect of tPA and might someday be used as an adjuvant therapy with tPA," she said. "I also did some work with beta amyloid, the protein implicated in Alzheimer’s disease. It seems that beta amyloid might increase levels of MMP-9 where MMPs would harm rather than help, and statins might help counteract that. So statins could play a role in treating Alzheimer’s disease."

Wang learned of Lo’s research during her undergraduate years at Harvard, where she earned a degree in biochemistry. Before choosing him as her mentor for the HHMI fellowship, she worked in his laboratory for a summer before matriculating at Mt. Sinai School of Medicine in New York. She’s scheduled to receive her M.D. in 2007.

"I was very fortunate to work on all these projects," Wang said. "I had a great time, and a wonderful mentor."

The first author on the Nature Medicine paper is Bing-Qiao Zhao, of the Neuroprotection Research Laboratory and Program in Neuroscience at Harvard. Authors Hahn-Young Kim, Hannah Storrie, Bruce R. Rosen, David J. Mooney, and Xiaoying Wang are also affiliated with Harvard.

Jennifer Donovan | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>