Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


’Accelerated evolution’ converts RNA enzyme to DNA enzyme in vitro

Experiment offers fresh insights into the origins of life on Earth

This "evolutionary conversion" provides a modern-day snapshot of how life as we understand it may have first evolved out of the earliest primordial mix of RNA-like molecules-sometimes referred to as the "pre-RNA world"-into a more complex form of RNA-based life (or the "RNA world") and eventually to cellular life based on DNA and proteins. Nucleic acids are large complex molecules that store and convey genetic information, but can also function as enzymes.

While the transfer of sequence information between two different classes of nucleic acid-like molecules-between RNA and DNA, for example-is straightforward because it relies on the one-to-one correspondence of the double helix pairing, transferring catalytic function is significantly more difficult because function cannot be conveyed sequentially. The present study demonstrates that the "evolutionary conversion" of an RNA enzyme to a DNA enzyme with the same function is possible, however, through the acquisition of a few critical mutations.

The study was released in an advance online version of the journal Chemistry & Biology.

Scripps Research Professor Gerald F. Joyce, a member of the Skaggs Institute for Chemical Biology whose laboratory conducted the study, said, "During early life on earth both genetic information and catalytic function were thought to reside only in RNA. In our study, the evolutionary transition from an RNA to a DNA enzyme represents a genuine change, rather than a simple expansion, of the chemical basis for catalytic function. This means that similar evolutionary pathways may exist between other classes of nucleic acid-like molecules. These findings could help answer some fundamental questions concerning the basic structure of life and how it evolved over time."

As Francis Crick, the Nobel laureate who, along with James Watson uncovered the double helix structure of DNA, articulated in 1970, all known organisms operate according to the central dogma of molecular biology-that the transfer of sequential genetic information proceeds from nucleic acid to nucleic acid, and from nucleic acid to protein. But a far different situation exists with regard to the transfer of catalytic function, which does not occur sequentially in contemporary biology. The new study shows that catalytic function can be transmitted sequentially between two different nucleic acid-like molecules, suggesting how it might have been conveyed from pre-RNA molecules to RNA during the simpler pre-RNA world period.

There are several candidates for the initial pre-RNA molecule, all of which have the ability to form base-paired structures with themselves and with RNA. Cross-pairing would allow genetic information to be transferred from these pre-RNA molecules to RNA. The catalytic function of these early enzymes might have been transferred to a corresponding RNA enzyme following the acquisition of a few critical mutations, the study said, just as the evolutionary change of a ribozyme to a deoxyribozyme with the same or similar catalytic functions might also have occurred through random mutation and selection.

For the study, an RNA ribozyme was converted to a corresponding deoxyribozyme through in vitro evolution. The ribozyme was first prepared as a DNA molecule of the same RNA sequence but with no detectable catalytic activity. A large number of randomized variations of this DNA were prepared, and repeated cycles of in vitro evolution were carried out. The result was a deoxyribozyme with about the same level of catalytic activity as the original ribozyme.

"The use of in vitro evolution provides the means to convert a ribozyme to a corresponding deoxyribozyme rapidly," Joyce said. "In the laboratory these procedures allow us to carry out many generations of test tube evolution. The resulting molecules have interesting catalytic properties, they teach us something new about evolution, and they have potential application as therapeutic and diagnostic agents."

Keith McKeown | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>