Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Accelerated evolution’ converts RNA enzyme to DNA enzyme in vitro

28.03.2006
Experiment offers fresh insights into the origins of life on Earth

This "evolutionary conversion" provides a modern-day snapshot of how life as we understand it may have first evolved out of the earliest primordial mix of RNA-like molecules-sometimes referred to as the "pre-RNA world"-into a more complex form of RNA-based life (or the "RNA world") and eventually to cellular life based on DNA and proteins. Nucleic acids are large complex molecules that store and convey genetic information, but can also function as enzymes.

While the transfer of sequence information between two different classes of nucleic acid-like molecules-between RNA and DNA, for example-is straightforward because it relies on the one-to-one correspondence of the double helix pairing, transferring catalytic function is significantly more difficult because function cannot be conveyed sequentially. The present study demonstrates that the "evolutionary conversion" of an RNA enzyme to a DNA enzyme with the same function is possible, however, through the acquisition of a few critical mutations.

The study was released in an advance online version of the journal Chemistry & Biology.

Scripps Research Professor Gerald F. Joyce, a member of the Skaggs Institute for Chemical Biology whose laboratory conducted the study, said, "During early life on earth both genetic information and catalytic function were thought to reside only in RNA. In our study, the evolutionary transition from an RNA to a DNA enzyme represents a genuine change, rather than a simple expansion, of the chemical basis for catalytic function. This means that similar evolutionary pathways may exist between other classes of nucleic acid-like molecules. These findings could help answer some fundamental questions concerning the basic structure of life and how it evolved over time."

As Francis Crick, the Nobel laureate who, along with James Watson uncovered the double helix structure of DNA, articulated in 1970, all known organisms operate according to the central dogma of molecular biology-that the transfer of sequential genetic information proceeds from nucleic acid to nucleic acid, and from nucleic acid to protein. But a far different situation exists with regard to the transfer of catalytic function, which does not occur sequentially in contemporary biology. The new study shows that catalytic function can be transmitted sequentially between two different nucleic acid-like molecules, suggesting how it might have been conveyed from pre-RNA molecules to RNA during the simpler pre-RNA world period.

There are several candidates for the initial pre-RNA molecule, all of which have the ability to form base-paired structures with themselves and with RNA. Cross-pairing would allow genetic information to be transferred from these pre-RNA molecules to RNA. The catalytic function of these early enzymes might have been transferred to a corresponding RNA enzyme following the acquisition of a few critical mutations, the study said, just as the evolutionary change of a ribozyme to a deoxyribozyme with the same or similar catalytic functions might also have occurred through random mutation and selection.

For the study, an RNA ribozyme was converted to a corresponding deoxyribozyme through in vitro evolution. The ribozyme was first prepared as a DNA molecule of the same RNA sequence but with no detectable catalytic activity. A large number of randomized variations of this DNA were prepared, and repeated cycles of in vitro evolution were carried out. The result was a deoxyribozyme with about the same level of catalytic activity as the original ribozyme.

"The use of in vitro evolution provides the means to convert a ribozyme to a corresponding deoxyribozyme rapidly," Joyce said. "In the laboratory these procedures allow us to carry out many generations of test tube evolution. The resulting molecules have interesting catalytic properties, they teach us something new about evolution, and they have potential application as therapeutic and diagnostic agents."

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>