Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cystic fibrosis research could benefit from multi-functional sensing tool

Researchers are using an innovative, multi-functional sensing tool to investigate adenosine triposphate (ATP) release and its role in cystic fibrosis. The ATP study marks the first application of a novel sensing system developed by a research team led by Christine Kranz at the Georgia Institute of Technology.

This patented technology adds recessed micro- and nano-electrodes to the tip of an atomic force microscope (AFM), creating a single tool that can simultaneously monitor topography along with electrochemical activity at the cell surface.

Researchers will present information on the research on March 26 at the American Chemical Society’s 231st meeting in Atlanta during a session on new approaches in analytical chemistry.

The new multi-functional imaging technique will advance the study of biological samples, said Boris Mizaikoff, an associate professor at Georgia Tech’s School of Chemistry and Biochemistry and director of its Applied Sensors Lab. "Conventional AFM can image surfaces, but usually provides limited chemical information," he explained. "And though scanning electrochemical microscopy (SECM), another probing technique, provides laterally resolved electrochemical data, it has limited spatial resolution. By combining AFM and SECM functionality into a single scanning probe, our tool provides researchers with a more holistic view of activities at the cell surface."

In addition to Mizaikoff and Kranz, the team also includes post-doctoral scholar Jean-Francois Masson and graduate student Justyna Wiedemair.

In the ATP study, which is sponsored by the National Institutes of Health and done in collaboration with Douglas Eaton at Emory University’s School of Physiology, the Georgia Tech team used the multi-scanning biosensors to study ATP release at the surface of live epithelial cells (cells that cover most glands and organs in the body). ATP, a chemical involved in energy transport, is of interest to medical researchers because elevated levels have been linked with cystic fibrosis, a disease that affects one out of every 2,500 people in the United States.

Using epithelial cell cultures from Emory, the Georgia Tech researchers have demonstrated that their multi-functional biosensors work at the live-cell surface during in vitro studies.

"Before you can identify what triggers the ATP release, we must be able to quantitatively measure the released species at the cell surface," Mizaikoff said, noting that many pathological events involve the disruption of chemical communication and molecular signaling between cells, especially in the nervous system, lungs and kidneys.

Improved understanding of cellular communication can lead to new strategies for treating diseases, Mizaikoff added: "Being able to operate sensors in an electrochemical imaging mode at the micro- and nanoscale is an exciting opportunity for complementing optical imaging techniques. There are many clinical research problems that these biosensors can help with."

During the same ACS session, the Georgia Tech team will also present findings of a related project.

A collaboration with Estelle Gauda at Johns Hopkins University and also supported by NIH grants, this project monitors ATP release at the carotid body. (The carotid body is a chemoreceptor that, among other functions, monitors oxygen content in the blood and helps control respiration.)

Chronic oxygen stress – too much or too little oxygen during early postnatal development – can lead to a deficiency in the amount of oxygen reaching body tissues in premature infants and newborn animals. But little is known about how oxygen stress affects regulatory networks and alters chemoreceptors. To gain insights, the Georgia Tech researchers will study ATP, which is among the signaling molecules released by the carotid body.

Researchers incorporate the same technology used for the multi-functional scanning probe. For this study, however, they have tailored the biosensor to work at a larger scale – microelectrodes are about 25 micrometers in diameter as opposed to the sub-micrometer dimensions of the combined AFM-SECM approach.

"There are a lot of emerging sensor technologies, but few have been adapted for routine use in medical research, which is one of the development goals at the Applied Sensors Lab," Mizaikoff said. "As analytical chemists, we want to develop quantitative sensing devices that can answer important questions for clinical researchers."

Jane Sanders | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>