Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clues to African archaeology found in lead isotopes

28.03.2006
Microscopic specs of lead are offering clues about the enormous cultural changes that swept across northern Africa a thousand years ago.

At The University of Arizona in Tucson, a young archaeologist is analyzing lead traces in artifacts to shed light on the relatively little-understood archaeology of Africa, especially the period marked by the spread of the new religion of Islam.

Thomas R. Fenn, a doctoral student in the UA anthropology department, is unraveling evidence of centuries-old trade patterns across the Sahara Desert by identifying smelted metal artifacts, mainly copper, found in the continent’s sub-Saharan regions.

Fenn will report the results of his work ("Getting to the source of the problem: Lead isotope analysis and provenance determination of ancient African copper artifacts") on Sunday, March 26, at 2 p.m., U.S. Eastern Time at the annual meeting of the American Chemical Society in Atlanta. Fenn’s presentation is in the Georgia World Congress Center, Room C-108.

As Islamic forces moved across northern Africa, they set in motion trading opportunities between the arid lands bordering the Mediterranean and the dense jungles and savannahs south of the Sahara.

One of the questions Fenn wants to answer concerns the sources of copper and other raw materials that became manufactured goods that were traded throughout the region. Specifically, why were metal workers in a sophisticated metallurgical industry in the sub-Sahara importing copper ingots when there were perfectly good copper ore deposits nearby?

Knowing where these and other materials originated, said Fenn, may offer larger insights about not only trade, but also about technologies, economics and social organization. Who controlled bankable natural resources and transportation routes? How was labor distributed in these societies?

David J. Killick, a UA associate professor of anthropology and expert on the archaeology of metallurgy in Africa, said tracing metals is a crucial part of understanding the development of trade in Africa.

"Most of the money circulating in the western half of the Islamic world between the 11th and 16th centuries was minted with gold from sub-Saharan west Africa, and competition for the wealth generated by the trade fueled the growth of major West African states like Ghana, Mali and Songhai," Killick said.

Using a process called lead isotope ratio analysis, or LIA, Fenn has examined more than 100 Iron-Age artifacts, most of them copper, from sub-Saharan Africa. The experiments were done in the W.M. Keck Isotope and Trace Element Laboratory at the UA. The lab is partially funded by the National Science Foundation and run by Joaquin Ruiz, a professor of geosciences and dean of the UA College of Science.

"LIA is extremely accurate as a forensic tool in identifying lead traces found in metal ores," said John Chesley, a research scientist in the UA department of geosciences who developed the laboratory and analytical techniques for Fenn’s project.

Lead has four different isotopes, three of which occur as the natural decay of uranium and thorium. The isotopic ratios change as a function of time. Smelting doesn’t change the ratios, making them a virtual fingerprint for a metal’s source of origin. Scientists need only about 100 billionth of a gram for analysis.

The trick, said Chesley, is making sure the sample remains completely free of contamination. The process takes about two weeks, but offers a high degree of certainty of linking objects to their source. LIA has been used successfully to determine the sources of non-ferrous metals from sites in other parts of the world for years, but its use in African archaeology is fairly recent.

"In reality, I am dating the deposition of the ores on a geological timescale - millions of years - but I am not dating them within an archaeological time scale," Fenn said. "I am, in fact, using the geological age, derived from the lead isotope ratios, as a means of provenancing raw and refined copper metals, and metallurgical debris, to a potential ore source based on the similarity of their geological age, i.e., their lead isotope ratios, as well as by examining and comparing their chemical compositions."

From his analysis, Fenn theorizes that the ore used to make the copper ornaments and other items found in the sites in West Africa likely came from North Africa. He said merchants there traded gold from regions like present-day Niger for copper from the north via camel caravans across the desert.

Refined copper, Fenn said, likely was prized as a commodity that fit in with the value system of the region, where it was easily worked into ornamental objects and other items that could be bartered for other goods and services.

Jeff Harrison | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>