Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolutionary biology research techniques predict cancer

28.03.2006
In diverse ecosystems, packed with wildly different species, evolution whizzes along. As different species accumulate mutations, some adapt particularly well to their environment and prosper. It happens in marine sediments, mountain forests – and, as a new study illustrates, in precancerous tumors, too.

In a study published online today in Nature Genetics, Carlo Maley, Ph.D., a researcher at The Wistar Institute, and his colleagues report that precancerous tumors containing a population of highly diverse cells were more likely to evolve into cancer than those containing genetically similar cells. The finding suggests that, in at least some forms of cancer, the more genetically diverse a precancerous tumor is, the more likely that tumor is to progress to full-blown cancer. If so, genetic diversity might act as a biomarker for cancer risk among patients with precancerous tissues.

"Although researchers first defined cancer in evolutionary terms in the 1970s, few researchers have actually studied the disease this way," says Maley, lead author on the study and an assistant professor in the molecular and cellular oncogenesis program at Wistar. "We wanted to know: If we measured a precancerous tumor’s genetic diversity at baseline, could we predict who would go on to get cancer?"

To find out, the scientists decided to analyze data on a precancerous condition called Barrett’s esophagus, in which cells lining the lower esophagus change due to repeated exposure to stomach acid from reflux, a condition often referred to as heartburn. Doctors typically adopt a "wait and watch" approach to treating patients with Barrett’s esophagus because the condition only rarely leads to cancer and is difficult to treat surgically.

In the study, Maley and colleagues analyzed precancerous tumor data from 268 patients, including multiple biopsies within each tumor. On average, these patients were followed for 4.4 years, during which time 37 developed cancerous tumors. Overall, the database used in the study represents more than 32,000 distinct genotypes of different cells within the tumors.

Using computational techniques to analyze the data, the researchers calculated measures of diversity inside the tumors. Essentially, they counted cell varieties and measured the genetic difference, or divergence, between those varieties. "Simply put, we took ecology measures of species diversity and translated them into measures of cell diversity within tumors," Maley says. The found a striking correlation between increased diversity of tumor cells and progression to cancer. For every additional cell variety detected in a tumor, the patient was twice as likely to progress to cancer.

Maley suggests that genetically diverse tumors have a high probability of generating mutant cells that will flourish and spread, allowing the tumor to transform and grow. In the future, in addition to serving as a biomarker for cancer risk, he adds, measures of genetic diversity might help doctors assess the success of cancer prevention therapies.

In fact, he speculates, genetic diversity among tumor cells might help explain why therapy sometimes fails. If a tumor contains a diverse population of cells, some of those cells are more likely to resist treatment, Maley says. Adapting to and surviving chemotherapy, these resistant cells could breed, leading to a cancer relapse. He hopes to pursue this hypothesis in the future. "More immediately," he adds, "we intend to validate the new study with other cohorts and other types of tumors."

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.org

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>