Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light activated anticancer drug targeted to DNA using cisplatin like sub-units

28.03.2006
One of the most effective chemotherapy drugs against cancer is cisplatin because it attaches to cancer DNA and disrupts repair.

However, it also kills healthy tissue. Many scientists are creating alternative drugs or cisplatin analogs in attempts to find treatments without side effects. One approach to analog development is light activated drugs, or photodynamic therapy (PDT). Now a Virginia Tech chemistry-biology research team that has been working on both non-cisplatin drugs and cisplatin analogs has combined their findings to create a molecular complex (supramolecule) that exploits cisplatins tumor targeting to deliver a light activated drug.

The latest results from the group’s research to create a DNA targeting, light activated anticancer drug will be presented at the 231st American Chemical Society national meeting in Atlanta on March 26-30.

Chemistry professor Karen J. Brewer reports that the group has developed supramolecular complexes that combine light-absorbing PDT agents and cisplatin like units. Previous anticancer molecules created by the group have contained platinum-based molecules that bind DNA. They have also developed new light activated systems able to photocleave DNA. This report combines these two approaches to target the drug to DNA using cisplatin like units, directing the light activation to tumor cells and the sub-cellular target, DNA.

"In the past, our light activated systems had to find the DNA within the cell, an often inefficient process. Now we have added the DNA targeting drug," Brewer said. "We were working on cisplatin analogs before, so we have tied it to light activated systems."

Cisplatin begins its interaction with cancer DNA by binding to the nitrogen atoms of the DNA bases, typically guanine. Our new supramolecules use this nitrogen-binding site to hold the light activated drug at the target until signaled to activate. Thus the new supramolecules can be delivered to the tumor site but remain inert until activated by a light signal. Light waves in the therapeutic range – that is, those that can penetrate tissue, are used to activate these new drugs. t The researchers are also appending other molecules that emit UV light to track the movement of these drugs within cells.

Virginia Tech chemistry graduate student Ran Miao will discuss how component identity dictates device properties. He will present the paper, "Synthesis and properties of mixed-metal Ru-Pt complexes: Coupling light absorbers to reactive metal centers" (INOR 105) at 3:30 p.m., Sunday, March 26, at the Georgia World Congress Center room B408. Co-authors are Matthew T. Mongelli, postdoctoral associate in chemistry at Virginia Tech, and Brewer.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu
http://www.biology.vt.edu/faculty/winkel/
http://www.chem.vt.edu/chem-dept/brewer/brewer.html

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>