Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inducing melanoma for cancer vaccine development

28.03.2006
Cancer vaccines are being investigated in early-phase clinical trials around the world, with many of those trials recruiting patients with melanoma.

Although tumor regressions have been seen in 10% to 20% of patients with metastatic melanoma, the great promise of cancer vaccines - controlling tumor growth and cancer spread without serious side-effects - remains as yet unrealized. This could be set to change with the publication of a new mouse model technology in Cancer Research, the journal of the American Association of Cancer Research, from a multi-national team led by investigators at the Brussels Branch of the global Ludwig Institute for Cancer Research (LICR).

“Melanoma has been a focus of cancer vaccine development because many melanoma-specific vaccine targets, so-called ‘cancer antigens’, have been defined,” says the study’s senior author, LICR’s Dr. Benoit Van den Eynde. “However, we have a limited understanding of how most, but not all, melanomas evade an immune system that has been primed to detect and destroy cancer cells carrying one of these defined cancer antigens.”

According to Dr. Van den Eynde, this is due in part to the lack of appropriate animal models in which detailed immunological analyses can be performed before and after vaccination. “The models we use to investigate cancer vaccines at the preclinical level either have a defined cancer antigen in a transplanted tumor, or they have an ‘original’ tumor that doesn’t have a defined antigen. However, in human clinical studies, we have original tumors with defined antigens. So there has been a need for a mouse model that more closely follows the human model.”

Thus the Institute that first cloned mouse and human cancer antigens, allowing the rational design of cancer vaccines, has developed a model in which melanoma with a defined cancer antigen can be induced. The model has been engineered to have several mutations found to occur together in human melanoma, and so closely mimics the genetic profile of cancers treated in the clinic. The team, which is comprised of investigators from Belgium, France and The Netherlands, has already begun characterizing a cancer antigen-specific immune reaction observed before the mice were even vaccinated, which they hope will lead to a further understanding of spontaneous melanoma regressions.

Dr. Jill O’Donnell-Tormey, Executive-Director of New York’s Cancer Research Institute, which was founded in 1953 specifically to foster cancer immunology research, believes that this model may yield information crucial for cancer vaccines for other tumor types and not just melanoma. “We have clinical trials for cancer antigens for sarcoma, for melanoma, and for breast, prostate, lung and ovarian cancers. We’re learning a lot from these trials, but we could learn a lot more if we have a model like this, which selectively expresses each of our target antigens. Just one example might be the analysis of the immune response to cancer antigens during the early stages of cancer onset and progression, which might indicate if there is an optimum time for vaccination.”

Sarah White | alfa
Further information:
http://www.licr.org/C_news/archive.php/2006/03/27/inducing-melanoma-for-cancer-vaccine-development/

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>