Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inducing melanoma for cancer vaccine development

28.03.2006
Cancer vaccines are being investigated in early-phase clinical trials around the world, with many of those trials recruiting patients with melanoma.

Although tumor regressions have been seen in 10% to 20% of patients with metastatic melanoma, the great promise of cancer vaccines - controlling tumor growth and cancer spread without serious side-effects - remains as yet unrealized. This could be set to change with the publication of a new mouse model technology in Cancer Research, the journal of the American Association of Cancer Research, from a multi-national team led by investigators at the Brussels Branch of the global Ludwig Institute for Cancer Research (LICR).

“Melanoma has been a focus of cancer vaccine development because many melanoma-specific vaccine targets, so-called ‘cancer antigens’, have been defined,” says the study’s senior author, LICR’s Dr. Benoit Van den Eynde. “However, we have a limited understanding of how most, but not all, melanomas evade an immune system that has been primed to detect and destroy cancer cells carrying one of these defined cancer antigens.”

According to Dr. Van den Eynde, this is due in part to the lack of appropriate animal models in which detailed immunological analyses can be performed before and after vaccination. “The models we use to investigate cancer vaccines at the preclinical level either have a defined cancer antigen in a transplanted tumor, or they have an ‘original’ tumor that doesn’t have a defined antigen. However, in human clinical studies, we have original tumors with defined antigens. So there has been a need for a mouse model that more closely follows the human model.”

Thus the Institute that first cloned mouse and human cancer antigens, allowing the rational design of cancer vaccines, has developed a model in which melanoma with a defined cancer antigen can be induced. The model has been engineered to have several mutations found to occur together in human melanoma, and so closely mimics the genetic profile of cancers treated in the clinic. The team, which is comprised of investigators from Belgium, France and The Netherlands, has already begun characterizing a cancer antigen-specific immune reaction observed before the mice were even vaccinated, which they hope will lead to a further understanding of spontaneous melanoma regressions.

Dr. Jill O’Donnell-Tormey, Executive-Director of New York’s Cancer Research Institute, which was founded in 1953 specifically to foster cancer immunology research, believes that this model may yield information crucial for cancer vaccines for other tumor types and not just melanoma. “We have clinical trials for cancer antigens for sarcoma, for melanoma, and for breast, prostate, lung and ovarian cancers. We’re learning a lot from these trials, but we could learn a lot more if we have a model like this, which selectively expresses each of our target antigens. Just one example might be the analysis of the immune response to cancer antigens during the early stages of cancer onset and progression, which might indicate if there is an optimum time for vaccination.”

Sarah White | alfa
Further information:
http://www.licr.org/C_news/archive.php/2006/03/27/inducing-melanoma-for-cancer-vaccine-development/

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>