Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists discover interplay between genes and viruses in tiny ocean plankton

Finding leads to new conclusions about marine environment

New evidence from open-sea experiments shows there’s a constant shuffling of genetic material going on among the ocean’s tiny plankton. It happens via ocean-dwelling viruses, scientists report this week in the journal Science.

Conducted by biological oceanographers Sallie Chisholm and her colleagues at the Massachusetts Institute of Technology, the research is uncovering a new facet of evolution and helping scientists see how microbes exploit changing conditions, such as altered light, temperature and nutrients.

"These results tell us that even the smallest organisms show genetic variation related to the environment in which they exist," said Philip Taylor, director of the National Science Foundation (NSF)’s biological oceanography program, which funded the research.

In addition to NSF, support for the research came from the Gordon and Betty Moore Foundation and from the U.S. Department of Energy.

"Our image of ocean microbes and their role in planetary maintenance is changing," Chisholm said. "We no longer think of the microbial community as being made up of species that have a fixed genetic make-up. Rather, it is a collection of genes, some of which are shared by all microbes and contain the information that drives their core metabolism, and others that are more mobile, which can be found in unique combinations in different microbes."

The distributors or carriers of new genes, the scientists suspect, are the massive numbers of viruses also known to exist in seawater. Some of them are adept at infecting ocean microbes like Prochlorococcus, the sea’s most abundant plankton species. The ocean viruses, which carry their own genes as well as transport others, provide a way of transferring genes from old cells into new ones.

"We’re beginning to get a picture of gene diversity and gene flow in Prochlorococcus," Chisholm said. "These photosynthesizing bacteria form an important part of the food chain in the oceans, supply some of the oxygen we breathe, and play a role in modulating climate. It’s important that we understand what regulates their populations. Genetic diversity seems to be an important factor."

In one report, Chisholm and scientist Maureen Coleman suggest that gene-swapping in ocean microbes resembles the flow of genes already known to occur among disease-causing bacteria. In an ocean habitat, the exchange offers marine microbes a diverse palette of potential gene combinations, each of which might be best suited for a particular environment. "This would allow the overall population to persist despite complex and unpredictable environmental changes," said Chisholm.

A second report, by Zackary Johnson and Erik Zinser, compares where Prochlorococcus microbes are found with the conditions under which they thrive. These geographic patterns relate to environmental variables such as temperature, predators, light and nutrients.

Chisholm is trying to learn how the microbes function as a system in which they have co-evolved with each other, and with the chemistry and physics of the oceans. The studies show that all Prochlorococcus strains are very closely related, yet they display an array of physiologies and genetic diversity, Chisholm said.

"Genetic diversity is at the heart of the extraordinary stability of Prochlorococcus in the oceans, which maintain steady population sizes over vast regions of the sea," she said.

Cheryl Dybas | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>