Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover interplay between genes and viruses in tiny ocean plankton

27.03.2006
Finding leads to new conclusions about marine environment

New evidence from open-sea experiments shows there’s a constant shuffling of genetic material going on among the ocean’s tiny plankton. It happens via ocean-dwelling viruses, scientists report this week in the journal Science.

Conducted by biological oceanographers Sallie Chisholm and her colleagues at the Massachusetts Institute of Technology, the research is uncovering a new facet of evolution and helping scientists see how microbes exploit changing conditions, such as altered light, temperature and nutrients.

"These results tell us that even the smallest organisms show genetic variation related to the environment in which they exist," said Philip Taylor, director of the National Science Foundation (NSF)’s biological oceanography program, which funded the research.

In addition to NSF, support for the research came from the Gordon and Betty Moore Foundation and from the U.S. Department of Energy.

"Our image of ocean microbes and their role in planetary maintenance is changing," Chisholm said. "We no longer think of the microbial community as being made up of species that have a fixed genetic make-up. Rather, it is a collection of genes, some of which are shared by all microbes and contain the information that drives their core metabolism, and others that are more mobile, which can be found in unique combinations in different microbes."

The distributors or carriers of new genes, the scientists suspect, are the massive numbers of viruses also known to exist in seawater. Some of them are adept at infecting ocean microbes like Prochlorococcus, the sea’s most abundant plankton species. The ocean viruses, which carry their own genes as well as transport others, provide a way of transferring genes from old cells into new ones.

"We’re beginning to get a picture of gene diversity and gene flow in Prochlorococcus," Chisholm said. "These photosynthesizing bacteria form an important part of the food chain in the oceans, supply some of the oxygen we breathe, and play a role in modulating climate. It’s important that we understand what regulates their populations. Genetic diversity seems to be an important factor."

In one report, Chisholm and scientist Maureen Coleman suggest that gene-swapping in ocean microbes resembles the flow of genes already known to occur among disease-causing bacteria. In an ocean habitat, the exchange offers marine microbes a diverse palette of potential gene combinations, each of which might be best suited for a particular environment. "This would allow the overall population to persist despite complex and unpredictable environmental changes," said Chisholm.

A second report, by Zackary Johnson and Erik Zinser, compares where Prochlorococcus microbes are found with the conditions under which they thrive. These geographic patterns relate to environmental variables such as temperature, predators, light and nutrients.

Chisholm is trying to learn how the microbes function as a system in which they have co-evolved with each other, and with the chemistry and physics of the oceans. The studies show that all Prochlorococcus strains are very closely related, yet they display an array of physiologies and genetic diversity, Chisholm said.

"Genetic diversity is at the heart of the extraordinary stability of Prochlorococcus in the oceans, which maintain steady population sizes over vast regions of the sea," she said.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>