Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water wings aid desert survival

01.11.2001


Back draught: this beetle drinks the water its bumps collect.
© Parker/Lawrence


Humans learn water-gathering trick from bumpy beetle.

A desert beetle turns fog into drinking water with its wings, new research reveals. Materials mimicking the insect could help humans survive harsh environments.

Southwest Africa’s Namib Desert is one of the hottest and driest places on Earth. There is no rain, but on about six mornings a month a fog blows in off the Atlantic and across the land at gale force.



The beetle Stenocara traps this fleeting resource, zoologist Andrew Parker, of the University of Oxford, and Chris Lawrence, of QinetiQ, the commercial arm of the UK defence ministry, have discovered. The insect’s hard front wings are covered in bumps. The peaks attract water and the valleys repel it1.

The beetle faces into the wind with its wings aloft. Fog droplets stick to the water-attracting bumps and coalesce. When they are big enough to touch a water-repelling valley, they roll down into the beetle’s mouth.

It’s an easy trick, and cheap to reproduce. Similar materials can be made using screen printing and injection moulding, or even with a computer printer that sprays water-attracting ink onto an acetate sheet.

Parker and QinetiQ are now optimizing the design and production of fog-collecting materials. Their current efforts are already "several times more efficient" than other fog collectors, says Parker. A product - probably a tent that can gather drinking water for its occupants - should be on the market within a year, he says.

The mists of time

People have collected fog to drink for centuries. Two thousand years ago, the Roman writer Pliny the Elder described how inhabitants of the Canary Islands gathered fog droplets trapped by trees. Stones placed around the trees to collect the drips are still there today.

Robert Schemenauer, of Environment Canada in Toronto, advises an ever-growing number of fog-collecting projects across the world. One of the first, set up in the Chilean village of Chungungo in 1987, now supplies 700 people with 15,000 litres of water each day.

Plastic mesh is Schemenauer’s fog-collecting material of choice. It is cheap, efficient and robust, he says. But improvements are always welcome: "If something can be transferred from a beetle to a building material it could help a lot," he says.

Beetle-inspired material might be particularly suited to gathering dew, says Schemenauer, where there is a problem of making the water droplets run off the collecting surface.

References
  1. Parker, A. R. & Lawrence, C. R Water capture by a desert beetle. Nature, 414, 33 - 34, (2001).

JOHN WHITFIELD | Nature News Service
Further information:
http://www.nature.com/nsu/011101/011101-14.html
http://www.nature.com/nsu/

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>