Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water wings aid desert survival

01.11.2001


Back draught: this beetle drinks the water its bumps collect.
© Parker/Lawrence


Humans learn water-gathering trick from bumpy beetle.

A desert beetle turns fog into drinking water with its wings, new research reveals. Materials mimicking the insect could help humans survive harsh environments.

Southwest Africa’s Namib Desert is one of the hottest and driest places on Earth. There is no rain, but on about six mornings a month a fog blows in off the Atlantic and across the land at gale force.



The beetle Stenocara traps this fleeting resource, zoologist Andrew Parker, of the University of Oxford, and Chris Lawrence, of QinetiQ, the commercial arm of the UK defence ministry, have discovered. The insect’s hard front wings are covered in bumps. The peaks attract water and the valleys repel it1.

The beetle faces into the wind with its wings aloft. Fog droplets stick to the water-attracting bumps and coalesce. When they are big enough to touch a water-repelling valley, they roll down into the beetle’s mouth.

It’s an easy trick, and cheap to reproduce. Similar materials can be made using screen printing and injection moulding, or even with a computer printer that sprays water-attracting ink onto an acetate sheet.

Parker and QinetiQ are now optimizing the design and production of fog-collecting materials. Their current efforts are already "several times more efficient" than other fog collectors, says Parker. A product - probably a tent that can gather drinking water for its occupants - should be on the market within a year, he says.

The mists of time

People have collected fog to drink for centuries. Two thousand years ago, the Roman writer Pliny the Elder described how inhabitants of the Canary Islands gathered fog droplets trapped by trees. Stones placed around the trees to collect the drips are still there today.

Robert Schemenauer, of Environment Canada in Toronto, advises an ever-growing number of fog-collecting projects across the world. One of the first, set up in the Chilean village of Chungungo in 1987, now supplies 700 people with 15,000 litres of water each day.

Plastic mesh is Schemenauer’s fog-collecting material of choice. It is cheap, efficient and robust, he says. But improvements are always welcome: "If something can be transferred from a beetle to a building material it could help a lot," he says.

Beetle-inspired material might be particularly suited to gathering dew, says Schemenauer, where there is a problem of making the water droplets run off the collecting surface.

References
  1. Parker, A. R. & Lawrence, C. R Water capture by a desert beetle. Nature, 414, 33 - 34, (2001).

JOHN WHITFIELD | Nature News Service
Further information:
http://www.nature.com/nsu/011101/011101-14.html
http://www.nature.com/nsu/

More articles from Life Sciences:

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

nachricht Self-assembled nanostructures hit their target
23.09.2016 | King Abdullah University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>