Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery About Protein Sorting in Pigment Cells Sheds Light on Melanoma, Alzheimer’s Disease

27.03.2006
Researchers at the University of Pennsylvania School of Medicine have discovered how a protein called Pmel17 is sorted by pigment cells in the skin and eye to make a fiber matrix that eventually sequesters melanin, the dark pigment found in skin, hair, and eyes.
Understanding the molecular steps prior to fiber formation – and when this process goes awry – may lead to a better understanding of melanoma and Alzheimer’s disease. Pmel17 is a major target within the immune system in current anti-melanoma immunotherapies. Michael S. Marks, PhD, Associate Professor of Pathology and Laboratory Medicine, and colleagues published their findings in the March issue of Developmental Cell.

Marks studies protein sorting – determining how proteins are delivered to the correct organelle, or subcompartments, within the cell. He investigates this basic process in pigment cells, particularly sorting to the melanin storage compartment called the melanosome. Melanin is normally stored by the cell in melanosomes because its build-up outside the melanosome can lead to cell death.

In the pigment-producing cell, called the melanocyte, melanin is laid down on a fibrous matrix made from Pmel17. Other work from the Marks lab and collaborators showed that the structure of Pmel17 is similar to amyloid protein, one of the hallmarks of Alzheimer’s disease plaques. Using mouse and human melanoma cells, the Marks lab also studies melanocytes for pathological conditions associated with mutations along the protein-sorting process.

“There’s no evidence that Pmel17 per se will initiate pathological cellular structures, but recent research from our lab shows that if we look at the structure of the fibers made up of Pmel17, it has all the biophysical properties of amyloid,” explains Marks. “Pmel17 is functioning in a physiological capacity the same way that amyloid functions in a pathological capacity.”

Before the fibers are laid down, the researchers found in the Developmental Cell study that Pmel17 passes through a series of compartments called endosomes, much the way proteins that are tagged for degradation do. They determined that this process also happens in non-pigment cells. This discovery indicates that sorting is not a melanocyte-specific process; the sorting phenomenon is a general one.

Other researchers have found that the Alzheimer’s precursor protein, the prion protein (responsible for Jakob-Creuztfeldt’s Disease, Mad Cow disease, and Kuru), and the precursors for several familial amyloid diseases all pass through one type of endosome. “This may be a general property of a class of amyloids – and the fact that the process happens in non-pigment cells means that it can also happen in neurons or epithelial cells where these amyloids cause problems,” says Marks.

Pmel17 and other proteins of melanocytes are well-known tumor antigens in melanoma patients. “What’s unique about these proteins, as opposed to other tumor antigens, is that there’s good evidence in melanoma patients that – via Pmel17 – you can stimulate helper T cells, whose antigens are also processed within the cell by protein- sorting mechanisms,” says Marks.

Exosomes are the special membranes with which the antigens associate in the protein-sorting process and are derived from endosome membranes. Hence, if the antigens get to the right endosome, they will be incorporated on exosomes. Once released outside the cell, the exosomes themselves get targeted to dendritic cells. Then exosomes ferry Pmel17 and other melanoma antigens from the melanoma tumor cell to the dendritic cell.

“Exosomes are a very hot topic now in cancer immunotherapy because dendritic cells are good at taking them up, processing the associated antigens, and presenting them to helper T cells, which then rally the immune system to fight the tumor.”

Marks says that understanding how and why the sorting process is required for Pmel17 fiber formation will likely provide researchers with the chance to interfere with this process, and may thus provide some therapeutic or preventative treatments for diseases like Alzheimer’s and the prion diseases.

“We’ve also shown a new way of targeting proteins to exosomes,” says Marks. “If we learn more about how this process works, we may be able to better manipulate tumor antigen access to dendritic cells and perhaps their ability to stimulate T cells.”

Study co-authors are Alexander C. Theos, Steven T. Truschel, Dawn C. Harper, Joanne F. Berson, and Penelope C. Thomas, all from Penn, as well as Ilse Hurbain and Graça Raposo from the Institut Curie in Paris. This research was funded in part by the National Eye Institute, the National Institute of Arthritis, Musculoskeletal and Skin Diseases, the National Cancer Institute, and an American Cancer Society Fellowship.

PENN Medicine is a $2.7 billion enterprise dedicated to the related missions of medical education, biomedical research, and high-quality patient care. PENN Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation’s first medical school) and the University of Pennsylvania Health System.

Penn’s School of Medicine is ranked #2 in the nation for receipt of NIH research funds; and ranked #4 in the nation in U.S. News & World Report’s most recent ranking of top research-oriented medical schools. Supporting 1,400 fulltime faculty and 700 students, the School of Medicine is recognized worldwide for its superior education and training of the next generation of physician-scientists and leaders of academic medicine.

The University of Pennsylvania Health System comprises: its flagship hospital, the Hospital of the University of Pennsylvania, consistently rated one of the nation’s “Honor Roll” hospitals by U.S. News & World Report; Pennsylvania Hospital, the nation’s first hospital; Penn Presbyterian Medical Center; a faculty practice plan; a primary-care provider network; two multispecialty satellite facilities; and home health care and hospice.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

A new dead zone in the Indian Ocean could impact future marine nutrient balance

06.12.2016 | Earth Sciences

Significantly more productivity in USP lasers

06.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>