Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery About Protein Sorting in Pigment Cells Sheds Light on Melanoma, Alzheimer’s Disease

27.03.2006
Researchers at the University of Pennsylvania School of Medicine have discovered how a protein called Pmel17 is sorted by pigment cells in the skin and eye to make a fiber matrix that eventually sequesters melanin, the dark pigment found in skin, hair, and eyes.
Understanding the molecular steps prior to fiber formation – and when this process goes awry – may lead to a better understanding of melanoma and Alzheimer’s disease. Pmel17 is a major target within the immune system in current anti-melanoma immunotherapies. Michael S. Marks, PhD, Associate Professor of Pathology and Laboratory Medicine, and colleagues published their findings in the March issue of Developmental Cell.

Marks studies protein sorting – determining how proteins are delivered to the correct organelle, or subcompartments, within the cell. He investigates this basic process in pigment cells, particularly sorting to the melanin storage compartment called the melanosome. Melanin is normally stored by the cell in melanosomes because its build-up outside the melanosome can lead to cell death.

In the pigment-producing cell, called the melanocyte, melanin is laid down on a fibrous matrix made from Pmel17. Other work from the Marks lab and collaborators showed that the structure of Pmel17 is similar to amyloid protein, one of the hallmarks of Alzheimer’s disease plaques. Using mouse and human melanoma cells, the Marks lab also studies melanocytes for pathological conditions associated with mutations along the protein-sorting process.

“There’s no evidence that Pmel17 per se will initiate pathological cellular structures, but recent research from our lab shows that if we look at the structure of the fibers made up of Pmel17, it has all the biophysical properties of amyloid,” explains Marks. “Pmel17 is functioning in a physiological capacity the same way that amyloid functions in a pathological capacity.”

Before the fibers are laid down, the researchers found in the Developmental Cell study that Pmel17 passes through a series of compartments called endosomes, much the way proteins that are tagged for degradation do. They determined that this process also happens in non-pigment cells. This discovery indicates that sorting is not a melanocyte-specific process; the sorting phenomenon is a general one.

Other researchers have found that the Alzheimer’s precursor protein, the prion protein (responsible for Jakob-Creuztfeldt’s Disease, Mad Cow disease, and Kuru), and the precursors for several familial amyloid diseases all pass through one type of endosome. “This may be a general property of a class of amyloids – and the fact that the process happens in non-pigment cells means that it can also happen in neurons or epithelial cells where these amyloids cause problems,” says Marks.

Pmel17 and other proteins of melanocytes are well-known tumor antigens in melanoma patients. “What’s unique about these proteins, as opposed to other tumor antigens, is that there’s good evidence in melanoma patients that – via Pmel17 – you can stimulate helper T cells, whose antigens are also processed within the cell by protein- sorting mechanisms,” says Marks.

Exosomes are the special membranes with which the antigens associate in the protein-sorting process and are derived from endosome membranes. Hence, if the antigens get to the right endosome, they will be incorporated on exosomes. Once released outside the cell, the exosomes themselves get targeted to dendritic cells. Then exosomes ferry Pmel17 and other melanoma antigens from the melanoma tumor cell to the dendritic cell.

“Exosomes are a very hot topic now in cancer immunotherapy because dendritic cells are good at taking them up, processing the associated antigens, and presenting them to helper T cells, which then rally the immune system to fight the tumor.”

Marks says that understanding how and why the sorting process is required for Pmel17 fiber formation will likely provide researchers with the chance to interfere with this process, and may thus provide some therapeutic or preventative treatments for diseases like Alzheimer’s and the prion diseases.

“We’ve also shown a new way of targeting proteins to exosomes,” says Marks. “If we learn more about how this process works, we may be able to better manipulate tumor antigen access to dendritic cells and perhaps their ability to stimulate T cells.”

Study co-authors are Alexander C. Theos, Steven T. Truschel, Dawn C. Harper, Joanne F. Berson, and Penelope C. Thomas, all from Penn, as well as Ilse Hurbain and Graça Raposo from the Institut Curie in Paris. This research was funded in part by the National Eye Institute, the National Institute of Arthritis, Musculoskeletal and Skin Diseases, the National Cancer Institute, and an American Cancer Society Fellowship.

PENN Medicine is a $2.7 billion enterprise dedicated to the related missions of medical education, biomedical research, and high-quality patient care. PENN Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation’s first medical school) and the University of Pennsylvania Health System.

Penn’s School of Medicine is ranked #2 in the nation for receipt of NIH research funds; and ranked #4 in the nation in U.S. News & World Report’s most recent ranking of top research-oriented medical schools. Supporting 1,400 fulltime faculty and 700 students, the School of Medicine is recognized worldwide for its superior education and training of the next generation of physician-scientists and leaders of academic medicine.

The University of Pennsylvania Health System comprises: its flagship hospital, the Hospital of the University of Pennsylvania, consistently rated one of the nation’s “Honor Roll” hospitals by U.S. News & World Report; Pennsylvania Hospital, the nation’s first hospital; Penn Presbyterian Medical Center; a faculty practice plan; a primary-care provider network; two multispecialty satellite facilities; and home health care and hospice.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>