Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery About Protein Sorting in Pigment Cells Sheds Light on Melanoma, Alzheimer’s Disease

27.03.2006
Researchers at the University of Pennsylvania School of Medicine have discovered how a protein called Pmel17 is sorted by pigment cells in the skin and eye to make a fiber matrix that eventually sequesters melanin, the dark pigment found in skin, hair, and eyes.
Understanding the molecular steps prior to fiber formation – and when this process goes awry – may lead to a better understanding of melanoma and Alzheimer’s disease. Pmel17 is a major target within the immune system in current anti-melanoma immunotherapies. Michael S. Marks, PhD, Associate Professor of Pathology and Laboratory Medicine, and colleagues published their findings in the March issue of Developmental Cell.

Marks studies protein sorting – determining how proteins are delivered to the correct organelle, or subcompartments, within the cell. He investigates this basic process in pigment cells, particularly sorting to the melanin storage compartment called the melanosome. Melanin is normally stored by the cell in melanosomes because its build-up outside the melanosome can lead to cell death.

In the pigment-producing cell, called the melanocyte, melanin is laid down on a fibrous matrix made from Pmel17. Other work from the Marks lab and collaborators showed that the structure of Pmel17 is similar to amyloid protein, one of the hallmarks of Alzheimer’s disease plaques. Using mouse and human melanoma cells, the Marks lab also studies melanocytes for pathological conditions associated with mutations along the protein-sorting process.

“There’s no evidence that Pmel17 per se will initiate pathological cellular structures, but recent research from our lab shows that if we look at the structure of the fibers made up of Pmel17, it has all the biophysical properties of amyloid,” explains Marks. “Pmel17 is functioning in a physiological capacity the same way that amyloid functions in a pathological capacity.”

Before the fibers are laid down, the researchers found in the Developmental Cell study that Pmel17 passes through a series of compartments called endosomes, much the way proteins that are tagged for degradation do. They determined that this process also happens in non-pigment cells. This discovery indicates that sorting is not a melanocyte-specific process; the sorting phenomenon is a general one.

Other researchers have found that the Alzheimer’s precursor protein, the prion protein (responsible for Jakob-Creuztfeldt’s Disease, Mad Cow disease, and Kuru), and the precursors for several familial amyloid diseases all pass through one type of endosome. “This may be a general property of a class of amyloids – and the fact that the process happens in non-pigment cells means that it can also happen in neurons or epithelial cells where these amyloids cause problems,” says Marks.

Pmel17 and other proteins of melanocytes are well-known tumor antigens in melanoma patients. “What’s unique about these proteins, as opposed to other tumor antigens, is that there’s good evidence in melanoma patients that – via Pmel17 – you can stimulate helper T cells, whose antigens are also processed within the cell by protein- sorting mechanisms,” says Marks.

Exosomes are the special membranes with which the antigens associate in the protein-sorting process and are derived from endosome membranes. Hence, if the antigens get to the right endosome, they will be incorporated on exosomes. Once released outside the cell, the exosomes themselves get targeted to dendritic cells. Then exosomes ferry Pmel17 and other melanoma antigens from the melanoma tumor cell to the dendritic cell.

“Exosomes are a very hot topic now in cancer immunotherapy because dendritic cells are good at taking them up, processing the associated antigens, and presenting them to helper T cells, which then rally the immune system to fight the tumor.”

Marks says that understanding how and why the sorting process is required for Pmel17 fiber formation will likely provide researchers with the chance to interfere with this process, and may thus provide some therapeutic or preventative treatments for diseases like Alzheimer’s and the prion diseases.

“We’ve also shown a new way of targeting proteins to exosomes,” says Marks. “If we learn more about how this process works, we may be able to better manipulate tumor antigen access to dendritic cells and perhaps their ability to stimulate T cells.”

Study co-authors are Alexander C. Theos, Steven T. Truschel, Dawn C. Harper, Joanne F. Berson, and Penelope C. Thomas, all from Penn, as well as Ilse Hurbain and Graça Raposo from the Institut Curie in Paris. This research was funded in part by the National Eye Institute, the National Institute of Arthritis, Musculoskeletal and Skin Diseases, the National Cancer Institute, and an American Cancer Society Fellowship.

PENN Medicine is a $2.7 billion enterprise dedicated to the related missions of medical education, biomedical research, and high-quality patient care. PENN Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation’s first medical school) and the University of Pennsylvania Health System.

Penn’s School of Medicine is ranked #2 in the nation for receipt of NIH research funds; and ranked #4 in the nation in U.S. News & World Report’s most recent ranking of top research-oriented medical schools. Supporting 1,400 fulltime faculty and 700 students, the School of Medicine is recognized worldwide for its superior education and training of the next generation of physician-scientists and leaders of academic medicine.

The University of Pennsylvania Health System comprises: its flagship hospital, the Hospital of the University of Pennsylvania, consistently rated one of the nation’s “Honor Roll” hospitals by U.S. News & World Report; Pennsylvania Hospital, the nation’s first hospital; Penn Presbyterian Medical Center; a faculty practice plan; a primary-care provider network; two multispecialty satellite facilities; and home health care and hospice.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>