Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New RNAi tools enable systematic studies of gene function

24.03.2006
Unique public-private partnership creates RNAi-based inhibitors for nearly every human and mouse gene, makes them available to all genetic researchers

An international public-private research team led by scientists at the Broad Institute of MIT and Harvard announced today the construction and availability of an extensive library of molecular reagents to silence most human and mouse genes. As described in the March 24 issue of Cell, this library consists of small RNA molecules that can switch off genes individually, allowing the user to dissect the genetic underpinnings of normal biology and disease. These RNA-interference (RNAi)-based gene inhibitors are packaged in lentiviruses, enabling their use in virtually all types of human and mouse cells. This work springs from the RNAi Consortium (TRC), a unique collaboration among academic research institutions and leading life science companies with the mission to build comprehensive RNAi libraries and make them available to scientists worldwide.

"Switching off a single gene through RNAi reveals how that gene functions in a particular biological process. When RNAi’s potential is applied to thousands of genes – as it has been in fruit flies and nematodes – it can provide a more complete picture of that process," said David Root, a senior author of the Cell paper and the director of TRC and the RNAi platform at the Broad Institute. "Thanks to this unique public-private effort, we now have new tools to enable the entire research community to realize the potential of RNAi in the two most important species in biomedicine."

"The RNAi library developed by TRC is a rich resource for biological discovery," said Nir Hacohen, assistant professor at Massachusetts General Hospital and Harvard Medical School, associate member of the Broad Institute and a senior author. "Ongoing studies in my own laboratory to understand how the immune system senses pathogens and appropriately targets its response will be accelerated using these tools."

RNAi gives scientists the ability to turn off an individual gene. Its workhorses are small RNA molecules, each of which is tailored to match a fragment of a gene’s unique DNA. This RNA can then bind to its gene target, rendering it inactive. In order to get the small RNAs into cells, TRC scientists packaged them in lentiviruses. "Across the spectrum of biomedicine, there is a need for tools that can be applied to diverse cell types. This is particularly true in cancer research," said Bill Hahn, assistant professor at Dana-Farber Cancer Institute and Harvard Medical School, associate member of the Broad Institute and a senior author of the study. "For TRC’s library, lentiviral delivery is an especially effective means to meet this need."

The parallel analysis of thousands of genes using RNAi allows researchers to more readily pinpoint the genes that control a biological process. Therefore, TRC developed the high-throughput techniques and quality-control measures required for such genome-scale studies. "It is a distinct challenge to achieve consistent and cost-effective RNAi methods and we placed a strong emphasis on this part of the process," said David Sabatini, member of Whitehead Institute for Biomedical Research, assistant professor at Massachusetts Institute of Technology, associate member of the Broad Institute and a senior author. "In the quest to develop comprehensive tools for gene discovery in mice and humans, this technology will be a key piece in the puzzle."

To evaluate the RNAi library’s performance, the scientists sampled a subset that targets approximately 1,000 human genes. They systematically inactivated these genes in a human cancer cell line to identify ones that regulate cell division during malignancy. Automated cellular imaging was used to efficiently identify dividing cells in thousands of samples. This approach uncovered more than 100 previously unknown growth regulators in addition to several known players, confirming the library’s sensitivity as a vehicle for gene discovery.

"This critical new tool illustrates the requirement for academic and industry partnerships to drive scientific innovation," said Eric Lander, director of the Broad Institute and a senior author. "The importance of putting these reagents in the public domain will be demonstrated by the many important biomedical discoveries that will stem from them."

Michelle Nhuch | EurekAlert!
Further information:
http://www.broad.mit.edu
http://www.sigmaaldrich.com
http://www.openbiosystems.com

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

Study shows how water could have flowed on 'cold and icy' ancient Mars

18.10.2017 | Physics and Astronomy

Navigational view of the brain thanks to powerful X-rays

18.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>