Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New RNAi tools enable systematic studies of gene function

24.03.2006
Unique public-private partnership creates RNAi-based inhibitors for nearly every human and mouse gene, makes them available to all genetic researchers

An international public-private research team led by scientists at the Broad Institute of MIT and Harvard announced today the construction and availability of an extensive library of molecular reagents to silence most human and mouse genes. As described in the March 24 issue of Cell, this library consists of small RNA molecules that can switch off genes individually, allowing the user to dissect the genetic underpinnings of normal biology and disease. These RNA-interference (RNAi)-based gene inhibitors are packaged in lentiviruses, enabling their use in virtually all types of human and mouse cells. This work springs from the RNAi Consortium (TRC), a unique collaboration among academic research institutions and leading life science companies with the mission to build comprehensive RNAi libraries and make them available to scientists worldwide.

"Switching off a single gene through RNAi reveals how that gene functions in a particular biological process. When RNAi’s potential is applied to thousands of genes – as it has been in fruit flies and nematodes – it can provide a more complete picture of that process," said David Root, a senior author of the Cell paper and the director of TRC and the RNAi platform at the Broad Institute. "Thanks to this unique public-private effort, we now have new tools to enable the entire research community to realize the potential of RNAi in the two most important species in biomedicine."

"The RNAi library developed by TRC is a rich resource for biological discovery," said Nir Hacohen, assistant professor at Massachusetts General Hospital and Harvard Medical School, associate member of the Broad Institute and a senior author. "Ongoing studies in my own laboratory to understand how the immune system senses pathogens and appropriately targets its response will be accelerated using these tools."

RNAi gives scientists the ability to turn off an individual gene. Its workhorses are small RNA molecules, each of which is tailored to match a fragment of a gene’s unique DNA. This RNA can then bind to its gene target, rendering it inactive. In order to get the small RNAs into cells, TRC scientists packaged them in lentiviruses. "Across the spectrum of biomedicine, there is a need for tools that can be applied to diverse cell types. This is particularly true in cancer research," said Bill Hahn, assistant professor at Dana-Farber Cancer Institute and Harvard Medical School, associate member of the Broad Institute and a senior author of the study. "For TRC’s library, lentiviral delivery is an especially effective means to meet this need."

The parallel analysis of thousands of genes using RNAi allows researchers to more readily pinpoint the genes that control a biological process. Therefore, TRC developed the high-throughput techniques and quality-control measures required for such genome-scale studies. "It is a distinct challenge to achieve consistent and cost-effective RNAi methods and we placed a strong emphasis on this part of the process," said David Sabatini, member of Whitehead Institute for Biomedical Research, assistant professor at Massachusetts Institute of Technology, associate member of the Broad Institute and a senior author. "In the quest to develop comprehensive tools for gene discovery in mice and humans, this technology will be a key piece in the puzzle."

To evaluate the RNAi library’s performance, the scientists sampled a subset that targets approximately 1,000 human genes. They systematically inactivated these genes in a human cancer cell line to identify ones that regulate cell division during malignancy. Automated cellular imaging was used to efficiently identify dividing cells in thousands of samples. This approach uncovered more than 100 previously unknown growth regulators in addition to several known players, confirming the library’s sensitivity as a vehicle for gene discovery.

"This critical new tool illustrates the requirement for academic and industry partnerships to drive scientific innovation," said Eric Lander, director of the Broad Institute and a senior author. "The importance of putting these reagents in the public domain will be demonstrated by the many important biomedical discoveries that will stem from them."

Michelle Nhuch | EurekAlert!
Further information:
http://www.broad.mit.edu
http://www.sigmaaldrich.com
http://www.openbiosystems.com

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>