Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The tiniest mutation will give a detoxification enzyme a completely new function

23.03.2006
Researchers at Uppsala University have made the surprising discovery that the smallest possible mutation in a detoxification enzyme can alter what type of chemical reaction it will catalyse. The results has been published online by the respected journal, Proceedings of the National Academy of Sciences, PNAS.

In all living organisms, molecules are transformed into new chemical substances through processes which are catalysed by enzymes. Enzymes are proteins whose catalysing capacity enables chemical reactions which otherwise would not occur with sufficient speed or in a controlled way. The molecular evolution of enzymes is based on major or minor structural changes in a protein, which acquires new catalytic characteristics through the modification. The mutations in the genetic material which cause these structural changes have been regarded as random, but in certain cases it appears as if certain positions in a protein mutate more frequently than other positions in the protein. These positions are assumed to be particularly important to the biological functions of the protein.

Glutathione transferases are a family of enzymes which catalyse the detoxification of a broad spectrum of mutagens and carcinogens. Through major or minor structural variations, these enzymes have acquired new characteristics, thereby giving rise to more detoxification enzymes and a reinforced defence against toxic substances. A team of researchers led by Professor Bengt Mannervik has now shown that mutations in a single position in a glutathione transferase can dramatically alter the enzyme’s capacity to act selectively on various toxic substances. Through one type of mutation, the enzyme will become adapted to reactions in which the reactive group in the toxic substance is split off and replaced by glutathione, the body’s protective substance; through alternative mutations, the enzyme acquires the capacity to neutralise other reactive groups by linking them with glutathione.

“This discovery shows how the evolution of new enzyme functions may be quickly adapted to new needs. This is particularly significant for the defence against new toxins which may appear and threaten the survival of biological organisms,” says Bengt Mannervik.

This new study complements an earlier study by the research team, published in Science in January, which showed how a protein could be tailored to fulfil new functions through major changes to its structure.

Anneli Waara | alfa
Further information:
http://www.pnas.org/cgi/content/abstract/0600849103v1

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>