Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UW-Madison engineers squeeze secrets from proteins

22.03.2006


Proteins, one of the basic components of living things, are among the most studied molecules in biochemistry. Understanding how proteins form or "fold" from sequenced strings of amino acids has long been one of the grand challenges of biology.

A common belief holds that the more proteins are confined by their environment, the more stable - or less likely to unfold - they become. Now, as reported on the cover of the March issue of Biophysical Journal, a team of chemical and biological engineers from UW-Madison shows that premise to be untrue. While confinement plays an important role, other factors are also at play.

"Most research in this area looked at proteins in free solution when in fact, most proteins are confined in some way," says Juan de Pablo, a chemical and biological engineer at the University of Wisconsin-Madison. "What we demonstrate for the first time is that the stability of proteins under severe confinement, which is really the relevant way of looking at them for numerous applications, depends on their shape, their size and their interactions with the environment. It is a delicate balance between the energy available to fold the protein and entropy, or it’s desire to be in the unfolded state."



De Pablo’s research team developed a method to precisely calculate the entropy and determine how much of a protein’s stability change upon confinement to attribute to energy and how much to entropy. "This is the important part of the calculation," de Pablo adds.

Protein stability is an incredibly important property in myriad applications, de Pablo says. Consider laundry detergent. A popular ad for detergent once claimed that "protein gets out protein." The idea behind this is that engineered enzymes are at work in the wash breaking down elements of a stain.

"Once a protein is folded, you can actually unfold it or destabilize it, either by heating it up, or by adding solvents to the system, like urea for example, that just destroy the folded structure of the protein. How resilient the protein is to these assaults is what we often call stability," de Pablo says. "Detergents like the ones you use to wash your clothes have enzymes that break the fat in stains. When you put you clothes in hot water in your washing machine, you want your detergents to withstand those high temperatures. So what people do is engineer enzymes that do not unfold when you put them in hot water. They design enzymes that are more stable than normal enzymes at high temperatures."

To better understand protein folding, de Pablo’s team built computer models of proteins under different types of confinement. These models were then simulated to gain a better understand of protein stability. Working with the UW-Madison Nanoscale Science and Engineering Center (NSEC), funded by the National Science Foundation, the researchers will continue to refine their models with the goal of confining, folding and measuring the stability of proteins under more realistic conditions.

Juan de Pablo | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>