Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UW-Madison engineers squeeze secrets from proteins

22.03.2006


Proteins, one of the basic components of living things, are among the most studied molecules in biochemistry. Understanding how proteins form or "fold" from sequenced strings of amino acids has long been one of the grand challenges of biology.

A common belief holds that the more proteins are confined by their environment, the more stable - or less likely to unfold - they become. Now, as reported on the cover of the March issue of Biophysical Journal, a team of chemical and biological engineers from UW-Madison shows that premise to be untrue. While confinement plays an important role, other factors are also at play.

"Most research in this area looked at proteins in free solution when in fact, most proteins are confined in some way," says Juan de Pablo, a chemical and biological engineer at the University of Wisconsin-Madison. "What we demonstrate for the first time is that the stability of proteins under severe confinement, which is really the relevant way of looking at them for numerous applications, depends on their shape, their size and their interactions with the environment. It is a delicate balance between the energy available to fold the protein and entropy, or it’s desire to be in the unfolded state."



De Pablo’s research team developed a method to precisely calculate the entropy and determine how much of a protein’s stability change upon confinement to attribute to energy and how much to entropy. "This is the important part of the calculation," de Pablo adds.

Protein stability is an incredibly important property in myriad applications, de Pablo says. Consider laundry detergent. A popular ad for detergent once claimed that "protein gets out protein." The idea behind this is that engineered enzymes are at work in the wash breaking down elements of a stain.

"Once a protein is folded, you can actually unfold it or destabilize it, either by heating it up, or by adding solvents to the system, like urea for example, that just destroy the folded structure of the protein. How resilient the protein is to these assaults is what we often call stability," de Pablo says. "Detergents like the ones you use to wash your clothes have enzymes that break the fat in stains. When you put you clothes in hot water in your washing machine, you want your detergents to withstand those high temperatures. So what people do is engineer enzymes that do not unfold when you put them in hot water. They design enzymes that are more stable than normal enzymes at high temperatures."

To better understand protein folding, de Pablo’s team built computer models of proteins under different types of confinement. These models were then simulated to gain a better understand of protein stability. Working with the UW-Madison Nanoscale Science and Engineering Center (NSEC), funded by the National Science Foundation, the researchers will continue to refine their models with the goal of confining, folding and measuring the stability of proteins under more realistic conditions.

Juan de Pablo | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>