Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UW-Madison engineers squeeze secrets from proteins

22.03.2006


Proteins, one of the basic components of living things, are among the most studied molecules in biochemistry. Understanding how proteins form or "fold" from sequenced strings of amino acids has long been one of the grand challenges of biology.

A common belief holds that the more proteins are confined by their environment, the more stable - or less likely to unfold - they become. Now, as reported on the cover of the March issue of Biophysical Journal, a team of chemical and biological engineers from UW-Madison shows that premise to be untrue. While confinement plays an important role, other factors are also at play.

"Most research in this area looked at proteins in free solution when in fact, most proteins are confined in some way," says Juan de Pablo, a chemical and biological engineer at the University of Wisconsin-Madison. "What we demonstrate for the first time is that the stability of proteins under severe confinement, which is really the relevant way of looking at them for numerous applications, depends on their shape, their size and their interactions with the environment. It is a delicate balance between the energy available to fold the protein and entropy, or it’s desire to be in the unfolded state."



De Pablo’s research team developed a method to precisely calculate the entropy and determine how much of a protein’s stability change upon confinement to attribute to energy and how much to entropy. "This is the important part of the calculation," de Pablo adds.

Protein stability is an incredibly important property in myriad applications, de Pablo says. Consider laundry detergent. A popular ad for detergent once claimed that "protein gets out protein." The idea behind this is that engineered enzymes are at work in the wash breaking down elements of a stain.

"Once a protein is folded, you can actually unfold it or destabilize it, either by heating it up, or by adding solvents to the system, like urea for example, that just destroy the folded structure of the protein. How resilient the protein is to these assaults is what we often call stability," de Pablo says. "Detergents like the ones you use to wash your clothes have enzymes that break the fat in stains. When you put you clothes in hot water in your washing machine, you want your detergents to withstand those high temperatures. So what people do is engineer enzymes that do not unfold when you put them in hot water. They design enzymes that are more stable than normal enzymes at high temperatures."

To better understand protein folding, de Pablo’s team built computer models of proteins under different types of confinement. These models were then simulated to gain a better understand of protein stability. Working with the UW-Madison Nanoscale Science and Engineering Center (NSEC), funded by the National Science Foundation, the researchers will continue to refine their models with the goal of confining, folding and measuring the stability of proteins under more realistic conditions.

Juan de Pablo | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>