Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Animals can change genes quickly to keep up with viral ingenuity

21.03.2006


Viruses are famous for evolving quickly, but the organisms they infect can’t be expected to sit idly by. There is now new evidence that animals in fact do an impressive job of keeping up in the ongoing evolutionary arms race between viruses and their hosts. Studying a special class of genes thought to have evolved in part as a defense system against viruses, researchers have found evidence that these genes are indeed among the fastest-evolving in the genome of the fruit fly, Drosophila. The work is reported by University of Edinburgh researchers Dr. Darren Obbard and Dr. Tom Little and colleagues and appears in the March 21st issue of Current Biology.



Viruses hijack the cells of other organisms, using them as factories to copy themselves. Animals and plants have a number of different locks and codes that help to keep the viruses out, but viruses are capable of evolving new ways of breaking the codes extremely quickly. The new research shows that genes controlling a part of the immune system that fights viruses actually evolve much faster than almost all other genes, evidence of the host’s evolutionary race to keep the viruses at bay.

In their research, the scientists found evidence that some genes that participate in so-called RNAi mechanisms evolve much faster than the vast majority of other genes in the fly’s genome. This is relevant for the virus-host arms race because RNAi pathways--which exist in both plants and animals--participate in molecular defenses against viruses by homing in on viral genetic material and directing its enzymatic destruction. Viruses can evolve quickly to out-maneuver RNAi mechanisms, but hosts would be expected to rapidly evolve countermeasures of their own to resist new viral strategies. The new research provides evidence for such rapid evolution of some RNAi genes: The researchers found that some RNAi components evolve far faster than 97% of all other fruit fly genes. This rapid evolution illustrates the vital role of RNAi in antiviral defense, and it shows that these genes can be central players in the evolution of host organisms in response to the ever-changing strategies of viral attacks.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com

More articles from Life Sciences:

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

127 at one blow...

18.01.2017 | Life Sciences

Brain-Computer Interface: What if computers could intuitively understand us

18.01.2017 | Information Technology

How gut bacteria can make us ill

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>