Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Animals can change genes quickly to keep up with viral ingenuity

21.03.2006


Viruses are famous for evolving quickly, but the organisms they infect can’t be expected to sit idly by. There is now new evidence that animals in fact do an impressive job of keeping up in the ongoing evolutionary arms race between viruses and their hosts. Studying a special class of genes thought to have evolved in part as a defense system against viruses, researchers have found evidence that these genes are indeed among the fastest-evolving in the genome of the fruit fly, Drosophila. The work is reported by University of Edinburgh researchers Dr. Darren Obbard and Dr. Tom Little and colleagues and appears in the March 21st issue of Current Biology.



Viruses hijack the cells of other organisms, using them as factories to copy themselves. Animals and plants have a number of different locks and codes that help to keep the viruses out, but viruses are capable of evolving new ways of breaking the codes extremely quickly. The new research shows that genes controlling a part of the immune system that fights viruses actually evolve much faster than almost all other genes, evidence of the host’s evolutionary race to keep the viruses at bay.

In their research, the scientists found evidence that some genes that participate in so-called RNAi mechanisms evolve much faster than the vast majority of other genes in the fly’s genome. This is relevant for the virus-host arms race because RNAi pathways--which exist in both plants and animals--participate in molecular defenses against viruses by homing in on viral genetic material and directing its enzymatic destruction. Viruses can evolve quickly to out-maneuver RNAi mechanisms, but hosts would be expected to rapidly evolve countermeasures of their own to resist new viral strategies. The new research provides evidence for such rapid evolution of some RNAi genes: The researchers found that some RNAi components evolve far faster than 97% of all other fruit fly genes. This rapid evolution illustrates the vital role of RNAi in antiviral defense, and it shows that these genes can be central players in the evolution of host organisms in response to the ever-changing strategies of viral attacks.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>