Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Animals can change genes quickly to keep up with viral ingenuity

21.03.2006


Viruses are famous for evolving quickly, but the organisms they infect can’t be expected to sit idly by. There is now new evidence that animals in fact do an impressive job of keeping up in the ongoing evolutionary arms race between viruses and their hosts. Studying a special class of genes thought to have evolved in part as a defense system against viruses, researchers have found evidence that these genes are indeed among the fastest-evolving in the genome of the fruit fly, Drosophila. The work is reported by University of Edinburgh researchers Dr. Darren Obbard and Dr. Tom Little and colleagues and appears in the March 21st issue of Current Biology.



Viruses hijack the cells of other organisms, using them as factories to copy themselves. Animals and plants have a number of different locks and codes that help to keep the viruses out, but viruses are capable of evolving new ways of breaking the codes extremely quickly. The new research shows that genes controlling a part of the immune system that fights viruses actually evolve much faster than almost all other genes, evidence of the host’s evolutionary race to keep the viruses at bay.

In their research, the scientists found evidence that some genes that participate in so-called RNAi mechanisms evolve much faster than the vast majority of other genes in the fly’s genome. This is relevant for the virus-host arms race because RNAi pathways--which exist in both plants and animals--participate in molecular defenses against viruses by homing in on viral genetic material and directing its enzymatic destruction. Viruses can evolve quickly to out-maneuver RNAi mechanisms, but hosts would be expected to rapidly evolve countermeasures of their own to resist new viral strategies. The new research provides evidence for such rapid evolution of some RNAi genes: The researchers found that some RNAi components evolve far faster than 97% of all other fruit fly genes. This rapid evolution illustrates the vital role of RNAi in antiviral defense, and it shows that these genes can be central players in the evolution of host organisms in response to the ever-changing strategies of viral attacks.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>