Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MiRNA Fingerprint Identified in Platelet Formation

17.03.2006


Scientists have identified a handful of microRNAs (miRNAs) that appear to play a significant role in the development of platelets – blood cells critical to the body’s ability to form clots following an injury. They also say some of these same miRNAs, when acting abnormally, may contribute to certain forms of leukemia.



“Basically, we found that a specific set of miRNA genes are turned off in normal platelet development, but turned on in certain platelet-related leukemia cells,” says lead author Dr. Ramiro Garzon, a clinical instructor in The Ohio State University College of Medicine.

The study is published online in the Proceedings of the National Academy of Sciences.


MiRNA has only recently been acknowledged as an important force in biology. For decades, scientific dogma has held that messenger RNA (mRNA) was responsible for carrying out DNA instructions, or code, for protein production in the cell. Little was known, however, about how cells actually regulated that process. But over the past 10 years, researchers have discovered that miRNA – tiny fragments of RNA typically no more than 20-25 nucleotides in length – also regulates protein synthesis by interfering with mRNA’s original instructions. They now know that miRNA helps to regulate many key biological processes, including cell growth, death, development and differentiation.

Dr. Carlo Croce, director of Ohio State’s Human Cancer Genetics Program, was the first to discover a link between miRNA and cancer. In the current study, Croce, who is also a member of the OSU Comprehensive Cancer Center, along with Garzon and colleagues from the M.D. Anderson Cancer Center, examined miRNA activity in the earliest phases of platelet development.

The researchers had previously uncovered substantial evidence linking certain patterns of miRNA to both normal and abnormal blood cell development, especially in diseases like chronic lymphocytic leukemia and lymphoma. Relatively little was known, however, about miRNA functionality in platelet formation.

Platelets are created from stem cells in the bone marrow. They evolve through a process called megakaryocytopoiesis, which generates megakaryocytes, or platelet parent cells.

The research team used microRNA gene chip analysis to identify miRNA expression in normal stem cells and megakaryoctyes. They also studied miRNA expression patterns in four acute megakaryoblastic leukemia (AMKL) cell lines. They discovered that a set of 17 miRNAs are turned off during normal megakaryocyte differentiation and that 8 of those genes create a molecular signature that clearly defines a megakaryocyte from any other type of cell.

“We believe this set of genes may contribute to platelet formation,” says Garzon. “We think that when these miRNAs are turned off, it’s a signal to other gene targets to get busy with the normal process of development.” Garzon says just the opposite happens in AMKL, an unusual form of leukemia more often found in children than adults.

In examining four sets of AMKL lines, they found that 10 miRNAs were turned on, again representing a molecular signature for that disease. “Interestingly, half of that number are also members of the miRNA profile in normal platelet cell development – suggesting that this small subset may be most important in understanding how AMKL develops, says Garzon.

Researchers believe that more knowledge about miRNA could lead to a new class of targeted therapies that may be helpful in treating leukemia and other diseases. “That day, however, is still a long way off,” says Garzon.

Grants from the National Cancer Institute, the Leukemia & Lymphoma Society, the Kimmel Foundation and a CLL Research Foundation Grant helped support the study.

Additional co-authors from OSU’s department of molecular virology, immunology and medical genetics include Flavia Pichiorri, Tizaiana Palumbo, Rodolfo Iuliano, Amelia Cimmino, Rami Aqeilan, Stefano Volinia, Darshna Bhatt, Hansjuerg Alder, Guido Marcucci, George Calin, Chang-Gong Liu and Clara Bloomfield. Michael Andreeff, who also helped with the study, is from the M.D. Anderson Cancer Center.

Michelle Gailiun | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>