Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research mice help scientists understand the complexities of cholesterol

17.03.2006


Scientists at Wake Forest University School of Medicine and colleagues have developed new research mice to help them better understand how the body makes and uses "good" cholesterol to protect against heart attacks and strokes. Their latest findings are reported in the April issue of the Journal of Clinical Investigation.



"Being able to develop drugs to raise levels of good cholesterol depends on knowing more about the how and where the particles are formed," said John S. Parks, Ph.D., from Wake Forest University School of Medicine. "These animals provide the first tools to address these questions."

High-density lipoprotein (HDL) cholesterol is called "good" cholesterol because higher levels are associated with lower risk of heart attacks. Physicians and scientists believe that HDL carries cholesterol away from the blood vessels and to the liver, where it is passed from the body. It may also help remove excess cholesterol from plaque in arteries, slowing the buildup that can lead to heart attacks and strokes.


Parks, a professor of pathology in the Section on Lipid Sciences, is part of a multi-center team that has developed three groups of research mice to investigate the complexities of good cholesterol. These specially developed mice have mutations in a gene (ABCA1) involved in HDL production. The scientists are using them to pinpoint where good cholesterol is produced and how it helps fight plaque buildup. In one group of animals, the ABCA1 gene is selectively deleted in the liver – which means their livers cannot produce HDL. It was through studying these mice that the scientists were able to report in 2005 that the liver is likely the body’s main source of good cholesterol – producing 70 to 80 percent.

Now, in the Journal of Clinical Investigation, they report that the intestines are the other source – producing 20 to 30 percent. This finding came from studying mice with the ABCA1 gene deleted in the intestine. Before these findings, scientists had thought that HDL formation occurred throughout the body – rather than coming from specific organs.

Scientists also know that very small amounts of HDL are produced in macrophages, cells in the blood vessel walls that are involved in the formation of plaques. Through studying the third group of mice – which produces no HDL in the vessel walls – the scientists hope to answer a conundrum about this source of good cholesterol. Previous research indicates that while the levels of HDL produced in the vessels are very small, it may play a large role in keeping the vessels healthy.

Knowing exactly what organs produce good cholesterol – and which sources are most important in fighting vessel disease – will allow drug developers to target specific organs to raise HDL levels. Currently, there are few drugs to raise HDL levels, and people who need to raise their HDL levels are advised to get more exercise.

The group will use the mice to evaluate potential drug therapies. Several drugs have been developed that can stimulate the ABCA1 gene to produce good cholesterol, but they aren’t useable in humans because of negative side effects. The scientists hope to learn more about how the drugs work and how they could be improved.

"The animals can help us determine which pathways are affected by drug therapy, which can eventually be translated to human studies," said Parks. "They are a valuable tool in the quest to find a therapy to raise HDL concentrations and retard the development of heart disease."

Parks’s colleagues on the current research are from the University of British Columbia in Vancouver, Canada, University Medical Center Groningen, The Netherlands, Academic Medical Center, Amsterdam, The Netherlands, State University of New York Downstate Medical Center, and Institut Pasteur de Lille and Faculte de Pharmacie, France.

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>