Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research mice help scientists understand the complexities of cholesterol

17.03.2006


Scientists at Wake Forest University School of Medicine and colleagues have developed new research mice to help them better understand how the body makes and uses "good" cholesterol to protect against heart attacks and strokes. Their latest findings are reported in the April issue of the Journal of Clinical Investigation.



"Being able to develop drugs to raise levels of good cholesterol depends on knowing more about the how and where the particles are formed," said John S. Parks, Ph.D., from Wake Forest University School of Medicine. "These animals provide the first tools to address these questions."

High-density lipoprotein (HDL) cholesterol is called "good" cholesterol because higher levels are associated with lower risk of heart attacks. Physicians and scientists believe that HDL carries cholesterol away from the blood vessels and to the liver, where it is passed from the body. It may also help remove excess cholesterol from plaque in arteries, slowing the buildup that can lead to heart attacks and strokes.


Parks, a professor of pathology in the Section on Lipid Sciences, is part of a multi-center team that has developed three groups of research mice to investigate the complexities of good cholesterol. These specially developed mice have mutations in a gene (ABCA1) involved in HDL production. The scientists are using them to pinpoint where good cholesterol is produced and how it helps fight plaque buildup. In one group of animals, the ABCA1 gene is selectively deleted in the liver – which means their livers cannot produce HDL. It was through studying these mice that the scientists were able to report in 2005 that the liver is likely the body’s main source of good cholesterol – producing 70 to 80 percent.

Now, in the Journal of Clinical Investigation, they report that the intestines are the other source – producing 20 to 30 percent. This finding came from studying mice with the ABCA1 gene deleted in the intestine. Before these findings, scientists had thought that HDL formation occurred throughout the body – rather than coming from specific organs.

Scientists also know that very small amounts of HDL are produced in macrophages, cells in the blood vessel walls that are involved in the formation of plaques. Through studying the third group of mice – which produces no HDL in the vessel walls – the scientists hope to answer a conundrum about this source of good cholesterol. Previous research indicates that while the levels of HDL produced in the vessels are very small, it may play a large role in keeping the vessels healthy.

Knowing exactly what organs produce good cholesterol – and which sources are most important in fighting vessel disease – will allow drug developers to target specific organs to raise HDL levels. Currently, there are few drugs to raise HDL levels, and people who need to raise their HDL levels are advised to get more exercise.

The group will use the mice to evaluate potential drug therapies. Several drugs have been developed that can stimulate the ABCA1 gene to produce good cholesterol, but they aren’t useable in humans because of negative side effects. The scientists hope to learn more about how the drugs work and how they could be improved.

"The animals can help us determine which pathways are affected by drug therapy, which can eventually be translated to human studies," said Parks. "They are a valuable tool in the quest to find a therapy to raise HDL concentrations and retard the development of heart disease."

Parks’s colleagues on the current research are from the University of British Columbia in Vancouver, Canada, University Medical Center Groningen, The Netherlands, Academic Medical Center, Amsterdam, The Netherlands, State University of New York Downstate Medical Center, and Institut Pasteur de Lille and Faculte de Pharmacie, France.

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>