Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene influences antidepressant response

17.03.2006


Whether depressed patients will respond to an antidepressant depends, in part, on which version of a gene they inherit, a study led by scientists at the National Institutes of Health (NIH) has discovered. Having two copies of one version of a gene that codes for a component of the brain’s mood-regulating system increased the odds of a favorable response to an antidepressant by up to 18 percent, compared to having two copies of the other, more common version.



Since the less common version was over 6 times more prevalent in white than in black patients – and fewer blacks responded – the researchers suggest that the gene may help to explain racial differences in the outcome of antidepressant treatment. The findings also add to evidence that the component, a receptor for the chemical messenger serotonin, plays a pivotal role in the mechanism of antidepressant action. The study, authored by National Institute of Mental Health (NIMH) researchers Francis J. McMahon, M.D., Silvia Buervenich, Ph.D., and Husseini Manji, M.D., along with collaborators at the National Human Genome Research Institute (NHGRI), the National Institute on Alcohol Abuse and Alcoholism (NIAAA), and other institutions, was posted online March 8 and will appear in the May, 2006 American Journal of Human Genetics.

"This discovery brings us closer to the day when clinicians will be able to offer treatment options and medications that are tailored and personalized to be optimally effective for individual patients," said NIH Director Elias A. Zerhouni, M.D.


However, the findings cannot yet guide treatment decisions.

"To our knowledge, this is the first demonstration of significant, replicated association between genetic variation and outcome of antidepressant treatment," added Manji, director of the NIMH’s Mood and Anxiety Disorders Program.

In the initial phase of the NIMH-funded STAR*D (Sequenced Treatment Alternatives for Depression) trial, about 47 percent of the 2,876 participants experienced some improvement with the serotonin selective reuptake inhibitor (SSRI) citalopram (Celexa). The NIH scientists set out to find genetic factors that might help to explain why some patients fared better than others.

They screened genetic material from 1,953 of the STAR*D patients, a sample with a higher percentage of responders (69 percent), in part because patients who were doing well tended to stay in contact longer and were more likely to allow a blood sample to be drawn. The researchers looked for associations between treatment response and 768 known sites of variability in 68 suspect genes – sites where letters in the genetic code vary across individuals.

They found the strongest connection in the gene that codes for the serotonin 2A receptor, one of several proteins to which serotonin binds when brain cells communicate.

Located on cells in the brain’s thinking center (cortex), the serotonin 2A receptor regulates circuits implicated in depression. Antidepressants, including citalopram, reduce the number of serotonin 2A receptors in animal cortex over the course of a few weeks – the same time-frame required for the drugs to work in humans – suggesting that the receptors are important in the drugs’ mechanism of action.

Everyone inherits two copies of the serotonin 2A receptor gene, one from each parent. A tiny glitch in the gene’s chemical sequence results in some people having an adenine (A) at the same point that other people have a guanine (G). So an individual can have gene types AA, AG or GG. Overall, the prevalence of the A version was 38 percent, compared to 62 percent for the G version in this sample. Fourteen percent had AA gene type, 43 percent AG and 43 percent GG. Since the site of variation is located in a stretch of genetic material with no known function, the researchers suspect that it may be just a marker for a still-undiscovered functional variation nearby in the gene.

Based on scores on a depression rating scale, close to 80 percent of patients who had AA responded to the antidepressant, compared to about 62 percent of those with GG. Thus, patients with the AA gene type were 16-18 percent more likely to benefit from the medication. Even patients with AG showed some increased benefit.

But this only applied to white patients, in whom the A version was more than six times more frequent than in black patients. There was no significant association between gene type and treatment outcome in black patients, who tended to fare less well in the trial overall.

"We now have to consider genetic factors as well as psychosocial issues in our attempts to explain why antidepressants do not help our black patients as much as they should," McMahon said. "The new findings help make a compelling case for a key role of the serotonin 2A receptor in the mechanism of antidepressant action."

Also participating in the study were: A. John Rush and Madhukar Trivedi, University of Texas Southwestern Medical Center; Gonzalo Laje, NIMH; Dennis Charney, Mount Sinai Hospital; Robert Lipsky, National Institute on Alcohol Abuse and Alcoholism (NIAAA); Alexander Wilson, Alexa Sorant, and George Papanicolaou, National Human Genome Research Institute (NHGRI); Maurizio Fava, Massachusetts General Hospital; and Stephen Wisniewski, University of Pittsburgh.

Jules Asher | EurekAlert!
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

nachricht Chlamydia: How bacteria take over control
28.03.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Chlamydia: How bacteria take over control

28.03.2017 | Life Sciences

A Challenging European Research Project to Develop New Tiny Microscopes

28.03.2017 | Medical Engineering

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>