Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metabolites of pharmaceuticals identified in wastewater

17.03.2006


University at Buffalo chemists have for the first time identified at wastewater treatment plants the metabolites of two antibiotics and a medial imaging agent.



The data, which the UB scientists will present tomorrow at the Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy being held in Orlando, will allow wastewater treatment plants to begin monitoring for these byproducts.

The results also reinforce concerns about excreted pharmaceutical compounds from wastewater systems that may end up in the water supply, potentially resulting in adverse effects for humans and the environment.


For example, antibiotics and their metabolites can significantly increase antibiotic resistance in the population. Synthetic hormones can act as endocrine disruptors, by mimicking or blocking hormones and disrupting the body’s normal functions.

The UB presentations will be made as part of a day-long symposium to be held March 16 on "Degradation and Treatment of Pharmaceuticals in the Environment." It will be chaired by Diana Aga, Ph.D., assistant professor of chemistry in UB’s College of Arts and Sciences and leader of the UB team.

According to Aga, it has been only in the past five years that analytical-chemistry techniques have become sufficiently affordable and practical to allow researchers to detect pharmaceuticals and their metabolites efficiently at the parts-per-billion and parts-per-trillion range.

"Current wastewater treatment processes are optimized to reduce nitrates and phosphates and dissolved organic carbon, the major pollutants of concern in domestic wastes," said Aga. "However, treatment facilities don’t monitor or measure organic microcontaminants like residues of pharmaceuticals and active ingredients of personal care products."

Aga said that most previous studies looked for drugs’ active ingredients in treated wastewater.

"But now we are doing laboratory studies to characterize what these ingredients degrade into during wastewater processing," she added. "The lesson is that not detecting active ingredients in the effluent doesn’t mean the water is clean. The pharmaceuticals we monitored are not degraded completely in the treatment plants; most of them are just transformed into other compounds that still may have adverse ecotoxicological effects."

The UB researchers have identified the metabolites for sulfamethoxazole and trimethoprim, commonly prescribed antibiotics, and for a synthetic estrogen, a common ingredient in birth control pills and in hormone replacement therapy.

In research published in January in Analytical Chemistry, the UB chemists also found that iopromide, a pharmaceutical imaging agent that patients consume before taking MRI tests, is barely degraded in the conventional activated sludge process.

However, they found that when conditions in biological treatment systems are optimized for nitrogen removal, this imaging agent does degrade.

Aga said that these findings have important implications because it means that wastewater treatment processes can be optimized to remove persistent pharmaceuticals in wastewater.

The UB researchers obtained samples during fall and spring from local wastewater treatment plants in the Western New York towns of Amherst, East Aurora, Lackawanna, Tonawanda and Holland, representing suburban, urban and rural areas.

They sampled effluent before and after each water-treatment stage to examine relative efficiencies of each treatment process.

Aga noted that based on the team’s findings, a combination of biological, chemical and physical processing techniques probably will be the most successful to remove completely pharmaceutical compounds and their metabolites from wastewater.

"Originally, it was hoped that during the disinfection process, through chlorination or ultraviolet techniques, removal of the drugs that we studied would be enhanced, but, in fact, neither of these is effective," she said.

The researchers did find, however, that that most wastewater treatment processes are effective in significantly degrading some common antibiotics, such as ciprofloxacin and tetracycline.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>