Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Starving Out Malaria Parasites

17.03.2006


New class of selective inhibitors paralyze essential plasmodium enzymes



The most dangerous variant of the malaria parasite, Plasmodium falciparum, infects up to 600 million people every year. The search for new effective therapies is thus an urgent area of research. An international team headed by François Diederich has now found a new point of attack: using a novel class of inhibitors, the researchers aim to block certain plasmodium enzymes known as plasmepsins, “starving out” the malaria parasite.

Plasmepsins belong to the family of aspartic protease enzymes. They dismantle human hemoglobin to deliver the amino acids that plasmodia need in order to grow. In developing a new inhibitor, it is important to ensure that it blocks all of the plasmodium plasmepsins while remaining inactive toward human aspartic proteases.


The team of researchers from the Swiss Federal Institute of Technology (ETH) in Zurich, the University of Victoria (Canada), Washington University, St. Louis (USA), and Actelion Pharmaceuticals in Allschwil (Switzerland) started with the previously determined spatial structure of one of the plasmepsins, plasmepsin II. This enzyme has a sort of pocket, formed by the opening of a peptide loop, which seemed to be a suitable point of attack for an inhibitor. On the basis of computer simulations, the researchers successfully developed a family of molecules that fit well into this cavity. The central structural element of these molecules is a bicyclic diamine framework: a six-membered ring of carbon atoms in which two opposite carbon atoms are additionally bridged by the nitrogen of the amino group. A second amino group is bound to a neighboring carbon atom. Like a pincer, the diamine framework clamps onto the catalytic dyad (the two catalytically active aspartate groups) of the plasmepsin. An additional side group fits into a second, adjacent pocket (S1/S3-cavity) of the enzyme.

Enzymatic assays pointed the way to the most effective molecules. It was demonstrated that these did not only block plasmepsin II, for which they were specifically tailored: plasmodium plasmepsins I and IV were both even more strongly inhibited. These enzymes clearly have a very similar structure. In contrast, human aspartyl proteases seem to have a completely different spatial structure because they are not affected at all. In cell cultures of plasmodium-infected red blood cells, the new inhibitors were able to inhibit the growth of the parasites. “We are now trying to further improve the activity of the inhibitors,” says Diederich, “with the goal of developing a new class of antimalaria agents.”

François Diederich | Angewandte Chemie
Further information:
http://www.diederich.chem.ethz.ch/
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>