Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Starving Out Malaria Parasites

17.03.2006


New class of selective inhibitors paralyze essential plasmodium enzymes



The most dangerous variant of the malaria parasite, Plasmodium falciparum, infects up to 600 million people every year. The search for new effective therapies is thus an urgent area of research. An international team headed by François Diederich has now found a new point of attack: using a novel class of inhibitors, the researchers aim to block certain plasmodium enzymes known as plasmepsins, “starving out” the malaria parasite.

Plasmepsins belong to the family of aspartic protease enzymes. They dismantle human hemoglobin to deliver the amino acids that plasmodia need in order to grow. In developing a new inhibitor, it is important to ensure that it blocks all of the plasmodium plasmepsins while remaining inactive toward human aspartic proteases.


The team of researchers from the Swiss Federal Institute of Technology (ETH) in Zurich, the University of Victoria (Canada), Washington University, St. Louis (USA), and Actelion Pharmaceuticals in Allschwil (Switzerland) started with the previously determined spatial structure of one of the plasmepsins, plasmepsin II. This enzyme has a sort of pocket, formed by the opening of a peptide loop, which seemed to be a suitable point of attack for an inhibitor. On the basis of computer simulations, the researchers successfully developed a family of molecules that fit well into this cavity. The central structural element of these molecules is a bicyclic diamine framework: a six-membered ring of carbon atoms in which two opposite carbon atoms are additionally bridged by the nitrogen of the amino group. A second amino group is bound to a neighboring carbon atom. Like a pincer, the diamine framework clamps onto the catalytic dyad (the two catalytically active aspartate groups) of the plasmepsin. An additional side group fits into a second, adjacent pocket (S1/S3-cavity) of the enzyme.

Enzymatic assays pointed the way to the most effective molecules. It was demonstrated that these did not only block plasmepsin II, for which they were specifically tailored: plasmodium plasmepsins I and IV were both even more strongly inhibited. These enzymes clearly have a very similar structure. In contrast, human aspartyl proteases seem to have a completely different spatial structure because they are not affected at all. In cell cultures of plasmodium-infected red blood cells, the new inhibitors were able to inhibit the growth of the parasites. “We are now trying to further improve the activity of the inhibitors,” says Diederich, “with the goal of developing a new class of antimalaria agents.”

François Diederich | Angewandte Chemie
Further information:
http://www.diederich.chem.ethz.ch/
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>