Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCR Researchers Grow Bone Cells on Carbon Nanotubes

17.03.2006


Bone cells appear as a clump at left, carbon nanotubes appear on the right.


Bone crystal growth on carbon nanotube substrate.


A paper published in Nano Letters is first to show that bone cells will adhere to and grow on a carbon nanotube scaffold.

Researchers at the University of California, Riverside have published findings that show, for the first time, that bone cells can grow and proliferate on a scaffold of carbon nanotubes.

The paper, titled Bone Cell Proliferation on Carbon Nanotubes, appears in the March 8 edition of Nano Letters, a journal of the American Chemical Society. Lead author, Laura Zanello, is an assistant professor of biochemistry at UCR and was joined by UCR colleagues, graduate students Bin Zhao and Hui Hu, and Robert C. Haddon, distinguished professor of chemistry and of chemical and environmental engineering.



Zanello’s paper builds on previous research by Haddon which showed that carbon nanotubes could be chemically compatible with bone cells.

Zanello’s experiment put Haddon’s findings to the test and found that the nanotubes, 100,000 times finer than a human hair, are an excellent scaffold for bone cells to grow on.

“In the past scientists have been plagued by toxicity issues when combining carbon nanotubes with living cells,” Zanello said. “So we have been looking for the most pure nanotubes we could get to reduce the presence of heavy metals that are frequently introduced in the manufacturing process.”

She credited Haddon’s graduate student Zhao, now a postgraduate researcher at the Oak Ridge National Laboratory, with manufacturing highly pure nanotubes for her to work with.

Some of the carbon nanotubes were chemically treated and others were not, then they were combined with rat bone cells to determine which combination or combinations worked best. Non-treated and electrically-neutral nanotubes emerged as the best scaffolds for bone growth.

Because carbon nanotubes are not biodegradable, they behave like an inert matrix on which cells can proliferate and deposit new living material, which becomes functional, normal bone, according to the paper. They therefore hold promise in the treatment of bone defects in humans associated with the removal of tumors, trauma, and abnormal bone development and in dental implants, Zanello added.

More research is needed to determine how the body will interact with carbon nanotubes, specifically in its immune response, the paper states.

“We hope to look at the atomic interactions between living matter and synthetic scaffolds so we can come up with material that can interact at the nanolevel with living cells,” Zanello said.

The University of California, Riverside is a major research institution. Key areas of research include nanotechnology, genomics, environmental studies, digital arts and sustainable growth and development. With a current undergraduate and graduate enrollment of more than 16,600, the campus is projected to grow to 21,000 students by 2010. Located in the heart of Inland Southern California, the nearly 1,200-acre, park-like campus is at the center of the region’s economic development. Visit www.ucr.edu or call 951-UCR-NEWS for more information.

Ricardo Duran | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>