Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prediction of a prokaryotic RNA-silencing system

16.03.2006


Researchers have used computational methods to predict what could be a prokaryotic RNA-silencing mechanism similar to the eukaryotic RNA- interference system. A study published today in the open access journal with a novel system of peer review, Biology Direct, provides the first strong evidence that a type of tandem repeats found in archaea and bacteria, the Clustered Regularly Interspaced Short Palindrome Repeats (CRISPR), might act in conjunction with the CRISPR-associated (cas) family of genes as a defence mechanism against phage and plasmid RNA. A number of Cas proteins are shown to contain domains that suggest a functional similarity to eukaryotic proteins involved in the eukaryotic RNA-interference system.



Kira Makarova and other members of a group led by Eugene Koonin, from the National Institutes of Health, Bethesda, USA, carried out a comparative genomic analysis of CRISPR and cas genes in archaeal and bacterial genome sequences retrieved from National Center for Biotechnology Information (NCBI) databases.

Makarova et al. identified a number of cas genes that are always located close to CRISPR clusters and encode proteins potentially involved in RNA-processing mechanisms such as unwinding and cleaving. These proteins might be functionally similar to eukaryotic enzymes involved in the RNA-interference system – Makarova et al. identify an analog to the eukaryotic RNAi protein Dicer and several potential analogs to the eukaryotic RNAi protein Slicer. But they are not homologous to Dicer and Slicer as they have no sequence similarity with them.


It has been shown that a proportion of inserts in CRISPR units are similar to fragments of viral or plasmid genomes. Makarova et al. extend these observations and propose that all CRISPR inserts are derived from viruses or plasmids but this is not immediately obvious because most of these agents are still unknown. They speculate that the inserts are transcribed and silence phage or plasmid sequences via the formation of a duplex, which is then cleaved by Cas proteins to destroy the foreign RNA.

Juliette Savin | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>