Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prediction of a prokaryotic RNA-silencing system

16.03.2006


Researchers have used computational methods to predict what could be a prokaryotic RNA-silencing mechanism similar to the eukaryotic RNA- interference system. A study published today in the open access journal with a novel system of peer review, Biology Direct, provides the first strong evidence that a type of tandem repeats found in archaea and bacteria, the Clustered Regularly Interspaced Short Palindrome Repeats (CRISPR), might act in conjunction with the CRISPR-associated (cas) family of genes as a defence mechanism against phage and plasmid RNA. A number of Cas proteins are shown to contain domains that suggest a functional similarity to eukaryotic proteins involved in the eukaryotic RNA-interference system.



Kira Makarova and other members of a group led by Eugene Koonin, from the National Institutes of Health, Bethesda, USA, carried out a comparative genomic analysis of CRISPR and cas genes in archaeal and bacterial genome sequences retrieved from National Center for Biotechnology Information (NCBI) databases.

Makarova et al. identified a number of cas genes that are always located close to CRISPR clusters and encode proteins potentially involved in RNA-processing mechanisms such as unwinding and cleaving. These proteins might be functionally similar to eukaryotic enzymes involved in the RNA-interference system – Makarova et al. identify an analog to the eukaryotic RNAi protein Dicer and several potential analogs to the eukaryotic RNAi protein Slicer. But they are not homologous to Dicer and Slicer as they have no sequence similarity with them.


It has been shown that a proportion of inserts in CRISPR units are similar to fragments of viral or plasmid genomes. Makarova et al. extend these observations and propose that all CRISPR inserts are derived from viruses or plasmids but this is not immediately obvious because most of these agents are still unknown. They speculate that the inserts are transcribed and silence phage or plasmid sequences via the formation of a duplex, which is then cleaved by Cas proteins to destroy the foreign RNA.

Juliette Savin | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>