Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Yanking’ chemical bonds with molecular wires speeds reactions

16.03.2006


Using a chain of molecules as an infinitesimal lanyard to tug on a chemical bond about to break, Duke University chemists have found they can speed a complex chemical reaction.



Their unusual manipulative technique can reveal previously unknown details about the evolution of such two-step bond reactions, said assistant Duke chemistry professor Stephen Craig. It might ultimately aid efforts to develop new kinds of polymers that can "heal" themselves after tearing, he said.

Craig, current doctoral student Farrell Kersey and former graduate student Wayne Yount described their discoveries in a research paper published online Friday, March 3, 2006, in the Journal of the American Chemical Society (JACS). The work was funded by the National Science Foundation.


"We probed a reaction in which a bond was being made and a bond was being broken by pulling on the bond being broken with an atomic force microscope (AFM)," said Craig. An AFM detects forces or creates images of surfaces at molecular scales by mechanically probing with a flexible microscopic cantilevered tip.

In their experiments, Craig’s group used an AFM tip to exert almost infinitesimally small tugs on a molecular complex made of pyridine and the metal palladium.

The researchers dangled the pyridine-palladium complex in space as if it were part of a molecular trapeze act, by attaching trapeze "wires" made of atomic chains of the molecule polyethylene glycol (PEG). One PEG chain connected the dangling pyridine-palladium to the AFM’s tip. A separate PEG "wire" anchored the complex underneath onto an underlying surface substrate.

When the AFM’s flexible tip pivoted upward, it pulled on the bond linking the pyridine to the palladium. "This is almost like spring-loading that bond," Craig said.

"As a bond breaks, it stretches," he said. "The distance between the atoms gets further and further. And we could infer from the behavior of this experiment that the rate of the reaction speeded up."

Since the whole array was submerged in a solution of the chemical solvent DMSO, the bond was already under pressure before the AFM began its work, he said.

"Because this solvent was present in excessive amounts, it wanted to form a bond with the palladium," he said. But the nature of that reaction requires the DMSO-palladium bond to form first before the palladium and pyridine could sever their connection, he added.

The Duke chemists sought to study how the sequence of bond forming and breaking would be affected if they artificially stretched the palladium-pyridine bond towards the breaking point.

They found that, although the pace of the reaction was accelerated, the order of bond forming and breaking did not change. "We could spring-load the bond enough so it sought to break very quickly. But the reaction still waited for the DMSO to bond to the palladium before the pyridine came off," he said.

The researchers also found that, when they repeated the experiment with a palladium-pyridine complex incorporating a modified pyridine, the response to pulling on the bond was the same even though the energy levels needed for bond-breaking were different.

These findings "are absolutely consistent with some very fundamental notions about the way energy is exchanged in chemical reactions," Craig said. "But to my knowledge it’s not an experiment that anyone else has done to test whether that was the case. This could lead to a more sophisticated understanding of the way reactions happen at their most fundamental levels."

According to Craig, additional studies into the order and consequences of chemical bond-breaking might also aid the discovery of new materials. "Someone might try to design certain types of molecules that would respond to mechanical stresses by breaking in a way that’s desirable," he said.

For example, he said such research might aid researchers like him who work on "self-healing polymers." Those are molecules in the early stages of development that would release chemicals to repair newly formed tears and cracks.

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>