Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


’Yanking’ chemical bonds with molecular wires speeds reactions


Using a chain of molecules as an infinitesimal lanyard to tug on a chemical bond about to break, Duke University chemists have found they can speed a complex chemical reaction.

Their unusual manipulative technique can reveal previously unknown details about the evolution of such two-step bond reactions, said assistant Duke chemistry professor Stephen Craig. It might ultimately aid efforts to develop new kinds of polymers that can "heal" themselves after tearing, he said.

Craig, current doctoral student Farrell Kersey and former graduate student Wayne Yount described their discoveries in a research paper published online Friday, March 3, 2006, in the Journal of the American Chemical Society (JACS). The work was funded by the National Science Foundation.

"We probed a reaction in which a bond was being made and a bond was being broken by pulling on the bond being broken with an atomic force microscope (AFM)," said Craig. An AFM detects forces or creates images of surfaces at molecular scales by mechanically probing with a flexible microscopic cantilevered tip.

In their experiments, Craig’s group used an AFM tip to exert almost infinitesimally small tugs on a molecular complex made of pyridine and the metal palladium.

The researchers dangled the pyridine-palladium complex in space as if it were part of a molecular trapeze act, by attaching trapeze "wires" made of atomic chains of the molecule polyethylene glycol (PEG). One PEG chain connected the dangling pyridine-palladium to the AFM’s tip. A separate PEG "wire" anchored the complex underneath onto an underlying surface substrate.

When the AFM’s flexible tip pivoted upward, it pulled on the bond linking the pyridine to the palladium. "This is almost like spring-loading that bond," Craig said.

"As a bond breaks, it stretches," he said. "The distance between the atoms gets further and further. And we could infer from the behavior of this experiment that the rate of the reaction speeded up."

Since the whole array was submerged in a solution of the chemical solvent DMSO, the bond was already under pressure before the AFM began its work, he said.

"Because this solvent was present in excessive amounts, it wanted to form a bond with the palladium," he said. But the nature of that reaction requires the DMSO-palladium bond to form first before the palladium and pyridine could sever their connection, he added.

The Duke chemists sought to study how the sequence of bond forming and breaking would be affected if they artificially stretched the palladium-pyridine bond towards the breaking point.

They found that, although the pace of the reaction was accelerated, the order of bond forming and breaking did not change. "We could spring-load the bond enough so it sought to break very quickly. But the reaction still waited for the DMSO to bond to the palladium before the pyridine came off," he said.

The researchers also found that, when they repeated the experiment with a palladium-pyridine complex incorporating a modified pyridine, the response to pulling on the bond was the same even though the energy levels needed for bond-breaking were different.

These findings "are absolutely consistent with some very fundamental notions about the way energy is exchanged in chemical reactions," Craig said. "But to my knowledge it’s not an experiment that anyone else has done to test whether that was the case. This could lead to a more sophisticated understanding of the way reactions happen at their most fundamental levels."

According to Craig, additional studies into the order and consequences of chemical bond-breaking might also aid the discovery of new materials. "Someone might try to design certain types of molecules that would respond to mechanical stresses by breaking in a way that’s desirable," he said.

For example, he said such research might aid researchers like him who work on "self-healing polymers." Those are molecules in the early stages of development that would release chemicals to repair newly formed tears and cracks.

Monte Basgall | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>