Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered small molecules

16.03.2006


Findings could increase popular compound’s therapeutic use and effectiveness



According to the study, these activators bind to specific sites on the neurotoxin protein, increasing protease activity and enhancing the toxin’s effect. In some cases, the study noted, the activation power of the new molecules was as much as fourteen-fold, the greatest increase in activation ever reported for a protease; before this study, a two-fold activation of a protease was referred to as a state of "superactivation." Proteases are enzymes that act as cellular catalysts, breaking up proteins into smaller elements such as amino acids and reducing the amount of energy needed for the activation.
The study was released in an advanced online version by the Journal of the American Chemical Society.

Kim Janda, currently the Ely R. Callaway Jr. professor of chemistry, director of the Worm Institute for Research and Medicine (WIRM), and head of the laboratory that conducted the study, said, "Since the botulinum neurotoxin is the most poisonous toxin known, finding a compound to activate it might seem somewhat counterproductive. But the range of clinical uses for the toxin have increased well beyond its cosmetic use--multiple sclerosis, stroke, cerebral palsy, migraine, and backache are just a few of the conditions for which BoNT has proven surprisingly effective. The discovery of small molecule activators may ultimately provide a valuable method for minimizing dosage, reducing resistance, and increasing its clinical efficacy."



Botulinum neurotoxins are the most lethal poisons known. They produce progressive paralysis by binding to nerves at the point where they connect to muscles, and blocking the release of acetylcholine, which signals the muscles to contract, including those that regulate breathing. Blocking the nerve signal results in paralysis and, unless treated quickly, death. A lethal dose is small--eight tenths of an inhaled microgram for a 175-pound person.

Because of its highly potent neurotoxic activity, Janda added, the use of BoNT is also of substantial global concern as a potential bioterrorist weapon.

One of the main drawbacks associated with BoNT as a therapeutic is that repeated use can lead to the development of a significant immune response. Tolerance to it develops most rapidly when patients receive frequent high doses of the toxin.

"We hypothesized that the use of BoNT in combination with a small molecule that could superactivate the action of the toxin would allow for lower doses," Janda said, "and reduce the patient’s immune response. As the importance of BoNT in medicine continues to expand, we need to find some way to counter these unintended immune responses. Compounds like the ones we discovered, which produced the greatest protease activation ever recorded, may point the way to a potential solution."

Other authors of the study include Laura A. McAllister, Mark S. Hixon, Jack P. Kennedy, and Tobin J. Dickerson, all of the Scripps Research Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, and Worm Institute for Research and Medicine (WIRM).

About The Scripps Research Institute

The Scripps Research Institute, headquartered in La Jolla, California, in 18 buildings on 40 acres overlooking the Pacific Ocean, is one of the world’s largest independent, non-profit biomedical research organizations. It stands at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its research into immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. Established in its current configuration in 1961, it employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel.

Scripps Florida, a 364,000 square-foot, state-of-the-art biomedical research facility, will be built in Palm Beach County. The facility will focus on basic biomedical science, drug discovery, and technology development. Palm Beach County and the State of Florida have provided start-up economic packages for development, building, staffing, and equipping the campus. Scripps Florida now operates with approximately 160 scientists, technicians, and administrative staff at 40,000 square-foot lab facilities on the Florida Atlantic University campus in Jupiter.

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>