Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Newly discovered small molecules


Findings could increase popular compound’s therapeutic use and effectiveness

According to the study, these activators bind to specific sites on the neurotoxin protein, increasing protease activity and enhancing the toxin’s effect. In some cases, the study noted, the activation power of the new molecules was as much as fourteen-fold, the greatest increase in activation ever reported for a protease; before this study, a two-fold activation of a protease was referred to as a state of "superactivation." Proteases are enzymes that act as cellular catalysts, breaking up proteins into smaller elements such as amino acids and reducing the amount of energy needed for the activation.
The study was released in an advanced online version by the Journal of the American Chemical Society.

Kim Janda, currently the Ely R. Callaway Jr. professor of chemistry, director of the Worm Institute for Research and Medicine (WIRM), and head of the laboratory that conducted the study, said, "Since the botulinum neurotoxin is the most poisonous toxin known, finding a compound to activate it might seem somewhat counterproductive. But the range of clinical uses for the toxin have increased well beyond its cosmetic use--multiple sclerosis, stroke, cerebral palsy, migraine, and backache are just a few of the conditions for which BoNT has proven surprisingly effective. The discovery of small molecule activators may ultimately provide a valuable method for minimizing dosage, reducing resistance, and increasing its clinical efficacy."

Botulinum neurotoxins are the most lethal poisons known. They produce progressive paralysis by binding to nerves at the point where they connect to muscles, and blocking the release of acetylcholine, which signals the muscles to contract, including those that regulate breathing. Blocking the nerve signal results in paralysis and, unless treated quickly, death. A lethal dose is small--eight tenths of an inhaled microgram for a 175-pound person.

Because of its highly potent neurotoxic activity, Janda added, the use of BoNT is also of substantial global concern as a potential bioterrorist weapon.

One of the main drawbacks associated with BoNT as a therapeutic is that repeated use can lead to the development of a significant immune response. Tolerance to it develops most rapidly when patients receive frequent high doses of the toxin.

"We hypothesized that the use of BoNT in combination with a small molecule that could superactivate the action of the toxin would allow for lower doses," Janda said, "and reduce the patient’s immune response. As the importance of BoNT in medicine continues to expand, we need to find some way to counter these unintended immune responses. Compounds like the ones we discovered, which produced the greatest protease activation ever recorded, may point the way to a potential solution."

Other authors of the study include Laura A. McAllister, Mark S. Hixon, Jack P. Kennedy, and Tobin J. Dickerson, all of the Scripps Research Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, and Worm Institute for Research and Medicine (WIRM).

About The Scripps Research Institute

The Scripps Research Institute, headquartered in La Jolla, California, in 18 buildings on 40 acres overlooking the Pacific Ocean, is one of the world’s largest independent, non-profit biomedical research organizations. It stands at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its research into immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. Established in its current configuration in 1961, it employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel.

Scripps Florida, a 364,000 square-foot, state-of-the-art biomedical research facility, will be built in Palm Beach County. The facility will focus on basic biomedical science, drug discovery, and technology development. Palm Beach County and the State of Florida have provided start-up economic packages for development, building, staffing, and equipping the campus. Scripps Florida now operates with approximately 160 scientists, technicians, and administrative staff at 40,000 square-foot lab facilities on the Florida Atlantic University campus in Jupiter.

Keith McKeown | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>