Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical reaction yields ties that bind permanently

15.03.2006


Devising a nifty variation on a tested method to bind compounds useful in biological and medical research, a group of chemists at the University of Illinois at Chicago has discovered a new way to make permanent these bindings called ligation reactions.



The group, led by David Crich, distinguished professor of chemistry at UIC, reports their findings in the March 1 issue of the Journal of the American Chemical Society.

Crich, graduate student Venkataramanan Krishnamurthy and post-doctoral researcher Thomas Hutton modified a common reaction called a disulfide ligation, used to bridge the amino acid cysteine with a related sulfur-containing compound called a thiol.


"It’s done in water and at room temperature and is widely applied by biochemists to conjugate all kinds of molecules onto proteins to make haptens for antibody generation," said Crich. "It has many applications."

But the disulfide ligation is not permanent, said Crich, which limits its usefulness in developing new medicines.

Crich’s goal is to devise a room-temperature, water-based method to do protein glycosylation -- basically the process of hanging carbohydrate groups onto proteins.

"Glycosylated proteins are enormously important in immunology, as markers for cancer, and even as potential cancer vaccines," he said.

Crich’s lab is good at performing glycosylation reactions, but needed to find a process for doing it in aqueous solutions and at room temperature. His group found a clue looking back at a reaction first described in the 1960s, in which compounds called allylic disulfides were rearranged to form a permanent linkage by removing one atom of sulfur.

But that chemistry, developed by Jack Baldwin, then at MIT and now at Oxford University, required many hours of heating at temperatures around 80 degrees Celsius.

"Our intention was to modify this chemistry to make it run at room temperature," said Crich. "What we decided to do was to replace one of the sulfur atoms in allylic disulfide with a selenium atom."

Crich’s laboratory created an allylic selenosulfide that proved to work well at room temperatures in aqueous solutions, and provide a permanent ligation.

Crich modestly calls this work "the easy bit," adding that protein glycosylation is the real challenge ahead.

"That’s important for drug delivery, particularly with long-acting drugs," he said. "There’s a multitude of potential applications in combinatorial chemistry."

Paul Francuch | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>