Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strength of cocaine cravings linked to brain response

15.03.2006


Rats that have a strong craving for cocaine have a different biochemical response to the drug than their less-addicted counterparts, researchers at UT Southwestern Medical Center have found.



The difference lies in the pleasure-seeking area of the brain, according to a study available online and appearing in a future issue of the journal Neuropsychopharmacology.

"This work shows that there are profound alterations in the brain mechanisms that regulate motivated behavior with addiction," said Dr. David Self, associate professor of psychiatry at UT Southwestern and senior author of the paper.


"It really shows that the addicted person is ill-equipped to cope because the brain is now wired to make them crave drugs more and get less satisfaction out of the drug or other life events that may be rewarding, and this study found biological changes that would explain these behavioral changes," said Dr. Self, who holds the Wesley Gilliland Professorship in Biomedical Research.

The researchers looked at dopamine receptors — molecules on cell surfaces that are activated when dopamine or other molecules bind to them. They focused on two types of receptors called D1 and D2.

Molecules that activate D1 are believed to decrease the craving response, while D2 activators are believed to increase it. Both of the receptors bind to the neurotransmitter dopamine in a part of the brain called the mesolimbic dopamine system.

In the study, rats had tubes surgically implanted that fed into their bloodstream, through which they could give themselves cocaine injections by pressing a lever. Some rats voluntarily gave themselves higher doses of cocaine than others did, an indication that they were more addicted to the cocaine.

The rats then went through three weeks of cocaine withdrawal, during which time they ceased to press the lever. At the late stages of withdrawal, a drug that specifically activated the D2 receptor was given to see if it would prompt the rats to press the lever again in search of cocaine. In another experiment, the rats were given a small dose of cocaine and a drug that activated the D1 receptor to see if the drug would block them from seeking more cocaine.

The strongly addicted rats responded more aggressively to the craving-enhancing D2 activator than the less-addicted rats did, and were not as strongly deterred by the D1 activator.

"It’s as if the cocaine-addicted animal is less easily satisfied and more easily induced to seek drugs due to alterations in these receptors," Dr. Self said.

Before the researchers administered cocaine, the rats were tested to see how much they moved around when given D1 or D2 activator drugs. Before getting the cocaine, their responses to each drug were the same. After being trained to take the cocaine, the strongly addicted rats were much more sensitive to the D2 activator but less sensitive to the D1 activator. These tests showed that the difference in sensitivity developed during the addiction process, rather than being already present in the animals from the beginning.

The researchers don’t know, however, whether the responses in the rats they studied were due to changes in the numbers of the receptors or to the biochemical actions of the receptors already present. Future research may help clarify those different scenarios, Dr. Self said.

Understanding how receptors control cravings may be applicable to humans, although addiction is a complicated mix of brain biochemistry and learned responses to environmental cues, as well as stress, Dr. Self said.

"If people do become addicted and say they want to quit, their brain system for inhibiting craving is weaker. We want to try to strengthen those systems that help them inhibit their craving," he said.

The lead author in the study was Scott Edwards, a neuroscience graduate student at UT Southwestern. Other UT Southwestern researchers involved in the study were Kimberly Whisler, a research associate in psychiatry, Dwain Fuller, faculty associate in psychiatry, and Dr. Paul Orsulak, professor of psychiatry and pathology.

The work was supported in part by the National Institute on Drug Abuse.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>