Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strength of cocaine cravings linked to brain response

15.03.2006


Rats that have a strong craving for cocaine have a different biochemical response to the drug than their less-addicted counterparts, researchers at UT Southwestern Medical Center have found.



The difference lies in the pleasure-seeking area of the brain, according to a study available online and appearing in a future issue of the journal Neuropsychopharmacology.

"This work shows that there are profound alterations in the brain mechanisms that regulate motivated behavior with addiction," said Dr. David Self, associate professor of psychiatry at UT Southwestern and senior author of the paper.


"It really shows that the addicted person is ill-equipped to cope because the brain is now wired to make them crave drugs more and get less satisfaction out of the drug or other life events that may be rewarding, and this study found biological changes that would explain these behavioral changes," said Dr. Self, who holds the Wesley Gilliland Professorship in Biomedical Research.

The researchers looked at dopamine receptors — molecules on cell surfaces that are activated when dopamine or other molecules bind to them. They focused on two types of receptors called D1 and D2.

Molecules that activate D1 are believed to decrease the craving response, while D2 activators are believed to increase it. Both of the receptors bind to the neurotransmitter dopamine in a part of the brain called the mesolimbic dopamine system.

In the study, rats had tubes surgically implanted that fed into their bloodstream, through which they could give themselves cocaine injections by pressing a lever. Some rats voluntarily gave themselves higher doses of cocaine than others did, an indication that they were more addicted to the cocaine.

The rats then went through three weeks of cocaine withdrawal, during which time they ceased to press the lever. At the late stages of withdrawal, a drug that specifically activated the D2 receptor was given to see if it would prompt the rats to press the lever again in search of cocaine. In another experiment, the rats were given a small dose of cocaine and a drug that activated the D1 receptor to see if the drug would block them from seeking more cocaine.

The strongly addicted rats responded more aggressively to the craving-enhancing D2 activator than the less-addicted rats did, and were not as strongly deterred by the D1 activator.

"It’s as if the cocaine-addicted animal is less easily satisfied and more easily induced to seek drugs due to alterations in these receptors," Dr. Self said.

Before the researchers administered cocaine, the rats were tested to see how much they moved around when given D1 or D2 activator drugs. Before getting the cocaine, their responses to each drug were the same. After being trained to take the cocaine, the strongly addicted rats were much more sensitive to the D2 activator but less sensitive to the D1 activator. These tests showed that the difference in sensitivity developed during the addiction process, rather than being already present in the animals from the beginning.

The researchers don’t know, however, whether the responses in the rats they studied were due to changes in the numbers of the receptors or to the biochemical actions of the receptors already present. Future research may help clarify those different scenarios, Dr. Self said.

Understanding how receptors control cravings may be applicable to humans, although addiction is a complicated mix of brain biochemistry and learned responses to environmental cues, as well as stress, Dr. Self said.

"If people do become addicted and say they want to quit, their brain system for inhibiting craving is weaker. We want to try to strengthen those systems that help them inhibit their craving," he said.

The lead author in the study was Scott Edwards, a neuroscience graduate student at UT Southwestern. Other UT Southwestern researchers involved in the study were Kimberly Whisler, a research associate in psychiatry, Dwain Fuller, faculty associate in psychiatry, and Dr. Paul Orsulak, professor of psychiatry and pathology.

The work was supported in part by the National Institute on Drug Abuse.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>