Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein that regulates quiescent blood stem cells may enhance recovery from radiation and chemo

14.03.2006


Scientists have uncovered new information about what orchestrates the complex balance between blood stem cells and mature blood cells, a relationship that is often disrupted in leukemia. The results, published in the March issue of Cancer Cell, will lead to a better understanding of the behavior of leukemic cells and may have vital clinical applications for patients recovering from chemotherapy, radiation therapy, or bone marrow transplantation.



Recent studies have implicated reduced levels of a transcription factor called MEF with subtypes of leukemia. Drs. Stephen D. Nimer and Daniel Lacorazza from Memorial Sloan-Kettering Cancer Center and colleagues examined the blood cells of mice that do not express MEF in their bone marrow and found an increased population of hematopoietic (blood-forming) stem cells (HSCs). HSCs are immature cells in the bone marrow that have the capacity to differentiate into all types of mature blood cells. A delicate balance exists between self-renewal and differentiation of HSCs because the body must retain a sufficient population of HSCs while continually producing the multitude of new blood cells that are needed each day.

The researchers demonstrated that MEF regulates a little-understood state of quiescence that enables HSCs to exist in a kind of suspended animation until they are recruited to promote rapid repopulation of depleted blood cells, as would be needed following treatment with chemotherapy or radiation therapy. MEF-deficient mice accumulated quiescent HSCs with the capacity for repopulation and demonstrated enhanced resistance to the effects of chemotherapeutic drugs and radiation, which is also seen in wild-type mice transplanted with MEF-deficient HSCs. "This feature can also be helpful to maintain HSCs in an undifferentiated state during gene therapy protocols," explains Dr. Lacorazza, now a faculty member at Baylor College of Medicine.


These results suggest that MEF regulates HSCs’ decision to remain quiescent or divide, and the researchers speculate that treatments to diminish MEF may improve recovery from chemotherapy and radiation. However, it is important to point out that while reduced expression of MEF might enhance recovery after myelosuppression, it is possible that certain leukemic stem cells may also be protected from these same treatments. "Myelotoxicity induced by chemotherapy or radiotherapy could be prevented by maintaining stem cells in a quiescent state during their administration to cancer patients. However, another implication of our work is that tumor stem cells are more quiescent than more differentiated tumor cells and could use similar mechanisms to resist the effects of chemotherapy or radiation," explains Dr. Nimer.

Joanne Nicholas | EurekAlert!
Further information:
http://www.mskcc.org

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Gecko adhesion technology moves closer to industrial uses

13.12.2017 | Information Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure

13.12.2017 | Physics and Astronomy

Research reveals how diabetes in pregnancy affects baby's heart

13.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>