Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mixed mortars of calcium and cement in the restoration of buildings

14.03.2006


The chemist Mikel Arandigoyen Vidaurre, of the Department of Chemistry and Soil Sciences of the University of Navarra, has proved the effectiveness of new formulas for the restoration of buildings. In his thesis, defended at the School of Sciences, he proposes a combination of calcium and cement, which is able to strengthen the qualities of both materials.



The restoration of architectural patrimony currently presents certain problems of compatibility. Cement-based mortar is useful for its quick setting, but it is very aggressive with stone. In addition, it has too much mechanical resistance and a high content of soluble salts, which can cause problems in the medium or long term.

Calcium-based mortar offers less resistance and has a slower setting time. Nevertheless, it has qualities that are better adapted to restoration. This material presents a zone of plastic deformation which permits it to absorb, without breaking, the deformations that are common in monuments.


A new method of tracking

Another difference between the two materials is based on the carbonation (the process which leads to the oxidation of iron). This is a phenomenon which is produced naturally and which provides mechanical resistance to calcium-based mortars, while it limits the useful life of reinforced concrete.

In his research, he has used a new method for tracking this process, by means of the evolution of weight. In function of the material studied, changes are produced at distinct rates and provoke diverse modifications in their microstructure.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=918

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>