Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Do plants have the potential to vaccinate against HIV?

14.03.2006


Fusion molecules could be the key to producing vaccines from plants



Scientists have developed a new kind of molecule which they believe could ultimately lead to the development of a vaccine against HIV using genetically modified tobacco. Writing in Plant Biotechnology Journal, Dr Patricia Obregon and colleagues from St George’s, University of London along with researchers at the University of Warwick say they have overcome a major barrier that has so far frustrated attempts to turn plants into economically viable “bioreactors” for vaccines.

By creating fusion molecules, the researchers have found a way to make plants produce more of the molecules (antigens) needed for vaccines. At the same time, they may also have discovered a way of producing better targeted vaccines.


Obregon and her colleagues in Dr Julian Ma’s laboratory are working with the p24 core protein of the Human Immunodeficiency Virus (HIV). This protein plays a central role in eliciting the immune response to HIV infection, and is therefore likely to be an integral part of any multicomponent vaccine for HIV.

Plants have already been used to produce many types of vaccine molecules, but a consistent problem has been achieving adequate levels of protein expression in order to make them viable as bioreactors for vaccines.

Obregon and her colleagues have found a way to significantly boost HIV-1 p24 protein production in plants by producing an entirely new molecule – a fusion of the HIV-1 p24 protein and part of another protein, human immunoglobulin A (IgA) - a major component of the immune system. The team found that the HIV-1p24 antigen produced in this way elicited appropriate immune response in mice.

The results have important implications for the economic viability of using plants as bioreactors to produce vaccines against HIV and other diseases. According to Obregon: “Using antibody-antigen fusion molecules may represent a generic strategy to increase the expression of recombinant proteins in plants. It could open the door to cheaper biopharmaceuticals. Plant-derived pharmaceuticals are of great interest because of their enormous potential for economy and scale of production. This technology could lead to production of modern medicines that will also be accessible to poor populations in developing countries – which is where these medicines are needed the most.”

The results could also lead to the development of more effective vaccines. By using specific immunoglobulin sequences in the fusion molecule, antigens could be targeted to specific cells in the immune system, the authors say.

Davina Quarterman | alfa
Further information:
http://www.blackwell-synergy.com/doi/full/10.1111/j.1467-7652.2005.00171.x

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>