Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Doernbecher researchers to study effectiveness of stem cell transplant in human brain

13.03.2006


First-of-its-kind clinical trial will explore safety, preliminary efficacy of injecting human stem cells directly into the brain to treat fatal pediatric neurodegenerative disorder



Researchers in Doernbecher Children’s Hospital at Oregon Health & Science University will begin a Phase I clinical trial using stem cells in infants and children with a rare neurodegenerative disorder that affects infants and children. The groundbreaking trial will test whether HuCNS-SC(TM), a proprietary human central nervous stem cell product developed by StemCells, Inc. is safe, and whether it can slow the progression of two forms of neuronal ceroid lipofuscinosis (NCL), a devastating disease that is always fatal. NCL is part of a group of disorders often referred to as Batten disease.

"NCL is a heartbreaking and devastating diagnosis for children and their families," said Robert D. Steiner, M.D., F.A.A.P., F.A.C.M.G., vice chairman of pediatric research, head of the Division of Metabolism and the study’s principal investigator at Doernbecher Children’s Hospital, OHSU. Steiner also is an associate professor of pediatrics, and molecular and medical genetics in the OHSU School of Medicine. "While the preclinical research in the laboratory and in animals is promising, it is important to note that this is a safety trial and, to our knowledge, purified neural stem cell transplantation has never been done before. It is our hope that stem cells will provide an important therapeutic advance for these children who have no other viable options."


NCL is caused by mutations or changes in the genes responsible for teaching the body how to make certain enzymes. Without these enzymes or proteins, material builds up inside brain neurons and other brain cells, causing a rapidly progressive decline in mental and motor function, blindness, seizures and early death. This study addresses two forms of NCL: infantile neuronal ceroid lipofuscinosis (INCL) and late-infantile neuronal ceroid lipofuscinosis (LINCL). Tragically, children with INCL typically die before age 5 and those with LINCL typically do not live past age 12.

"If delivering stem cells directly into the human brain is safe and effective, it will, in my opinion, be a major step forward in the efforts of scientists and clinicians around the country to find new treatments with the potential to help tens of thousands of patients with degenerative brain diseases," said co-investigator Nathan Selden, M.D., Ph.D., F.A.C.S., F.A.A.P. "I am proud that Doernbecher Children’s Hospital will be part of this effort." Selden is Campagna Associate Professor of Pediatric Neurological Surgery and head of the Division of Pediatric Neurological Surgery, Doernbecher and OHSU School of Medicine.

Up to six children from Oregon or around the country will undergo HuCNS-SC transplantation at Doernbecher. Previous studies of mice that are missing one of the enzymes that causes NCL have shown HuCNS-SC increases the amount of the missing enzyme, reduces the amount of abnormal material in the brain and prevents the death of some brain cells. No major side effects have been reported in animals.

StemCells, Inc. received clearance from the U.S. Food and Drug Administration to initiate a Phase 1 clinical trial of HuCNS-SC in October 2005. The company believes this will be the first trial using a purified composition of neural stem cells as a potential therapeutic agent in humans.

Tamara Hargens | EurekAlert!
Further information:
http://www.ohsu.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>