Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Doernbecher researchers to study effectiveness of stem cell transplant in human brain


First-of-its-kind clinical trial will explore safety, preliminary efficacy of injecting human stem cells directly into the brain to treat fatal pediatric neurodegenerative disorder

Researchers in Doernbecher Children’s Hospital at Oregon Health & Science University will begin a Phase I clinical trial using stem cells in infants and children with a rare neurodegenerative disorder that affects infants and children. The groundbreaking trial will test whether HuCNS-SC(TM), a proprietary human central nervous stem cell product developed by StemCells, Inc. is safe, and whether it can slow the progression of two forms of neuronal ceroid lipofuscinosis (NCL), a devastating disease that is always fatal. NCL is part of a group of disorders often referred to as Batten disease.

"NCL is a heartbreaking and devastating diagnosis for children and their families," said Robert D. Steiner, M.D., F.A.A.P., F.A.C.M.G., vice chairman of pediatric research, head of the Division of Metabolism and the study’s principal investigator at Doernbecher Children’s Hospital, OHSU. Steiner also is an associate professor of pediatrics, and molecular and medical genetics in the OHSU School of Medicine. "While the preclinical research in the laboratory and in animals is promising, it is important to note that this is a safety trial and, to our knowledge, purified neural stem cell transplantation has never been done before. It is our hope that stem cells will provide an important therapeutic advance for these children who have no other viable options."

NCL is caused by mutations or changes in the genes responsible for teaching the body how to make certain enzymes. Without these enzymes or proteins, material builds up inside brain neurons and other brain cells, causing a rapidly progressive decline in mental and motor function, blindness, seizures and early death. This study addresses two forms of NCL: infantile neuronal ceroid lipofuscinosis (INCL) and late-infantile neuronal ceroid lipofuscinosis (LINCL). Tragically, children with INCL typically die before age 5 and those with LINCL typically do not live past age 12.

"If delivering stem cells directly into the human brain is safe and effective, it will, in my opinion, be a major step forward in the efforts of scientists and clinicians around the country to find new treatments with the potential to help tens of thousands of patients with degenerative brain diseases," said co-investigator Nathan Selden, M.D., Ph.D., F.A.C.S., F.A.A.P. "I am proud that Doernbecher Children’s Hospital will be part of this effort." Selden is Campagna Associate Professor of Pediatric Neurological Surgery and head of the Division of Pediatric Neurological Surgery, Doernbecher and OHSU School of Medicine.

Up to six children from Oregon or around the country will undergo HuCNS-SC transplantation at Doernbecher. Previous studies of mice that are missing one of the enzymes that causes NCL have shown HuCNS-SC increases the amount of the missing enzyme, reduces the amount of abnormal material in the brain and prevents the death of some brain cells. No major side effects have been reported in animals.

StemCells, Inc. received clearance from the U.S. Food and Drug Administration to initiate a Phase 1 clinical trial of HuCNS-SC in October 2005. The company believes this will be the first trial using a purified composition of neural stem cells as a potential therapeutic agent in humans.

Tamara Hargens | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>