Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dark glasses go green

30.10.2001


Bright future: new glass could make shades greener
© PhotoDisc


New light-sensitive glass can be recycled cleanly.

Researchers in Japan have developed recyclable light-sensitive glass. The new ’ecoglass’ does not contain the environmentally damaging halogen elements chlorine, bromine or iodine. These elements are essential to the photochromic glass that is currently used for car windscreens, sunglasses and visual display units.

Like photographic film, today’s photochromic glasses darken because they contain compounds of silver and halogens, such as silver iodide. Ultraviolet light in sunlight gives some of the electrons in the halogen ions enough energy to move around - these electrons combine with silver ions to make neutral atoms of metallic silver. The silver atoms then aggregate into tiny particles, scattering light and turning the glass dark.



This process is reversible - some glasses go light again after a few minutes away from ultraviolet radiation, whereas others must be heated. In each case, electrons come away from the silver atoms, causing the clusters to fall apart into silver ions once more.

Instead of halogens, which react with carbon-based molecules to form toxic and carcinogenic compounds, Tetsuo Yazawa and colleagues at the National Institute of Advanced Industrial Science and Technology in Osaka add silver ions in the form of silver nitrate to a fairly standard mixture of glass ingredients1.

The silver-nitrate glass turns from clear to yellow under ultraviolet light. When the yellowed glass is heated to 500 oC for 15 minutes, it turns clear again. This colour change, from clear to yellow and back, can be repeated many times.

The researchers have not made glass in any other colours yet - a wider spectrum is needed for some applications. And the colour change has so far been produced only by several minutes of irradiation with an ultraviolet laser, rather than with natural sunlight. But the new material shows that halogens are not essential to the process.

Yazawa’s and his colleagues point out that their material might find more high-tech applications in ’optical memory’ devices that can be reversibly imprinted with information using lasers.

References
  1. Chen, S., Akai, T., Kadono, K. & Yazawa, T. A silver-containing halogen-free inorganic photochromic glass. Chemical Communications, 2001, 2090 - 2091, (2001).


PHILIP BALL | Nature News Service
Further information:
http://www.nature.com/nsu/011101/011101-8.html
http://www.nature.com/nsu/

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>