Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetically engineered mosquitoes show resistance to dengue fever virus

10.03.2006


Researchers create new tool against transmission of virus



Researchers have successfully created a genetically engineered mosquito that shows a high level of resistance against the most prevalent type of dengue fever virus, providing a powerful weapon against a disease that infects 50 million people each year.

Anthony James, a UC Irvine vector biologist, is one of a team of researchers who injected DNA into mosquito embryos, creating the first stable transgenic mosquito resistant to Type 2 dengue fever virus, the most prevalent strain of the disease. The mosquitoes that survived the procedure also remained fertile and were able to reproduce, a key factor for any future strategies that may involve replacing mosquito populations with their genetically modified counterparts.


The results were published this week in the early online edition of the Proceedings of the National Academy of Sciences.

“These results are very exciting because they provide us a genetic tool we can use to control mosquito-borne diseases such as dengue fever,” James said. “We have been working for some time on the individual components of creating a genetically modified mosquito that would fend off dengue infection, but this is the first time we have brought all the pieces together to create a stable model that can also reproduce.”

In the study, the researchers exploited a vulnerability of the dengue virus to make the mosquitoes resistant to infection. This vulnerability occurs when the virus replicates and its single strand of RNA – a chemical cousin of DNA – briefly becomes double–stranded. At this point, the virus is vulnerable because of a naturally occurring protein called dicer-2. This protein initially has no effect on a single strand of RNA, but acts like scissors on the double strand, chopping it up and rendering its genetic material useless. Once this process is started, the single-stranded RNA also becomes vulnerable to dicer-2 and is cut up, thereby preventing further virus replication.

On its own, this process of self-destruction happens only after the virus has already replicated and been transmitted; however, the researchers found a way to control and speed up the process. They accomplished this by cloning a section of the virus’ RNA and injected two inverse copies of it into mosquito embryos. The copies formed a double-stranded RNA, which, as expected, bound with dicer-2 and was chopped up. The virus never had the opportunity to replicate. As a result, they could “inoculate” mosquitoes with a form of the virus that would essentially be benign.

Joining James on the study, funded by a 2001 grant from the National Institutes of Health, were researchers from Colorado State University and from Virginia Polytechnic Institute and State University.

James and his colleagues performed tests on a family of mosquitoes descended from one of the original embryos that survived the procedure. They found that the vast majority of that family was highly resistant to dengue infection. They also were able to detect the engineered RNA in the mosquitoes, a sign that the genetic alteration had been successful and passed down through reproduction. Furthermore, when that genetic modification was reversed, the mosquitoes were as susceptible to the virus as they had been before the procedure.

Dengue fever is endemic in more than 100 countries in Africa, the Americas, the Eastern Mediterranean, Southeast Asia and the Western Pacific. The virus is transmitted to people by mosquitoes of the species Aedes aegypti. The World Health Organization estimates 50 million cases of dengue infection each year. Approximately 20,000 people die annually from the disease.

James, a professor of microbiology and molecular genetics, and of molecular biology and biochemistry, has made a number of significant advances on genetic approaches to interrupt malaria parasite and dengue virus transmission by mosquitoes. He has received a number of international awards for his research.

In 2005, he received a $19.7 million grant from the Foundation for the National Institutes of Health to lead an international effort to develop new methods to control the transmission of dengue fever. The project is among 43 groundbreaking research projects to improve health in developing countries, supported by $436 million for the Grand Challenges in Global Health Initiative, launched by the Bill and Melinda Gates Foundation.

According to James, the next step of this research will be to use the FNIH grant to explore population replacement strategies using the genetically modified mosquitoes. He stressed that no genetically altered mosquitoes will be released at any time during these studies.

About the University of California, Irvine: The University of California, Irvine is a top-ranked university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 24,000 undergraduate and graduate students and about 1,400 faculty members. The second-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3.3 billion.

Farnaz Khadem | EurekAlert!
Further information:
http://www.today.uci.edu
http://www.uci.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>