Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists develop genome-wide map of miRNA-mRNA interactions

10.03.2006


Researchers at New York University’s Center for Comparative Functional Genomics and the University of California, Berkeley have used computational analyses to predict a genome-wide map of microRNA (miRNA) targets in the animal model organism, Caenorhabditis elegans (C. elegans). MicroRNAs bind to messenger RNA (mRNA) in a specific section, called 3’UTR, and are known to regulate them. Parts of the predicted map were confirmed through the development of a novel in vivo method that asked whether the 3’ UTR part of mRNAs was driving regulation during development in a living organism. Their research appears in the most recent issue of Current Biology.



In mapping miRNA targets, the research team examined the function of the genome of C. elegans, the first animal species whose genome was completely sequenced and a model organism to study how embryos develop. Using PicTar, an algorithm developed at NYU, the researchers predicted miRNA functions of C. elegans genes. The researchers found that one-third of C. elegans miRNAs target gene sets have related functions. That is, it appears that miRNAs can control groups of genes that work in a specific biological process. At least 10 percent of C. elegans genes are predicted miRNA targets.

To test the computational predictions, the NYU team developed a new in vivo analysis system comparing the expression of a reporter, green fluorescent protein (GFP) carrying target 3’ UTRs with controls, that did not carry the target 3’UTRs. The laboratory results confirmed the role of specific 3’ UTRs in suppressing gene expression even more widely than predicted by the computational analysis, suggesting that 3’ UTRs contain a largely unexplored universe for gene regulation.


The thousands of genome-wide miRNA target predictions for nematodes, or roundworms, humans, and flies are available from the PicTar website (pictar.bio.nyu.edu) and are linked to a new graphical network-browsing tool developed in the NYU Center for Comparative Functional Genomics. This allows for exploration of miRNA target predictions in the context of various functional genomic data resources (gnetbrowse.org).

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu
http://gnetbrowse.org

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>