Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists develop genome-wide map of miRNA-mRNA interactions

10.03.2006


Researchers at New York University’s Center for Comparative Functional Genomics and the University of California, Berkeley have used computational analyses to predict a genome-wide map of microRNA (miRNA) targets in the animal model organism, Caenorhabditis elegans (C. elegans). MicroRNAs bind to messenger RNA (mRNA) in a specific section, called 3’UTR, and are known to regulate them. Parts of the predicted map were confirmed through the development of a novel in vivo method that asked whether the 3’ UTR part of mRNAs was driving regulation during development in a living organism. Their research appears in the most recent issue of Current Biology.



In mapping miRNA targets, the research team examined the function of the genome of C. elegans, the first animal species whose genome was completely sequenced and a model organism to study how embryos develop. Using PicTar, an algorithm developed at NYU, the researchers predicted miRNA functions of C. elegans genes. The researchers found that one-third of C. elegans miRNAs target gene sets have related functions. That is, it appears that miRNAs can control groups of genes that work in a specific biological process. At least 10 percent of C. elegans genes are predicted miRNA targets.

To test the computational predictions, the NYU team developed a new in vivo analysis system comparing the expression of a reporter, green fluorescent protein (GFP) carrying target 3’ UTRs with controls, that did not carry the target 3’UTRs. The laboratory results confirmed the role of specific 3’ UTRs in suppressing gene expression even more widely than predicted by the computational analysis, suggesting that 3’ UTRs contain a largely unexplored universe for gene regulation.


The thousands of genome-wide miRNA target predictions for nematodes, or roundworms, humans, and flies are available from the PicTar website (pictar.bio.nyu.edu) and are linked to a new graphical network-browsing tool developed in the NYU Center for Comparative Functional Genomics. This allows for exploration of miRNA target predictions in the context of various functional genomic data resources (gnetbrowse.org).

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu
http://gnetbrowse.org

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>