Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Outsmarting the Smartie bug

10.03.2006


Complete description of pneumococcal vaccine targets



New tools in the fight against pneumococci – the bugs targeted by vaccines recently announced by the Department of Health – are described by a team led by scientists from the Wellcome Trust Sanger Institute. They have put together a complete description of the targets of the vaccine that will help monitor the disease and provide new tools for rapid diagnosis.

Pneumococci (formal name Streptococcus pneumoniae) are widespread, causing non-invasive disease, such as ear and sinus infections, and rarer, invasive disease, such as pneumonia and meningitis. About one in three children each year has an ear infection, of which about one-third will be due to the pneumococcus. More significantly, invasive disease is a major cause of death: around 1 million people, mostly young children in developing countries, die each year.


The research, published online today in PLoS Genetics, shows how the target of the vaccines, called the polysaccharide capsule, has evolved and allows the researchers to determine functions of the genes involved. The polysaccharide capsule forms a sugary coat around the bacterium and changing the structure of the capsule can help it to fool our immune defence systems – like a Smartie changing its colour.

“The bug has a polysaccharide coat which can take any one of 90 different forms, known as serotypes,” said Stephen Bentley, leader of the project at the Wellcome Trust Sanger Institute. “The coat is essential for its ability to cause disease and its interaction with our immune system and some serotypes are more likely to be associated with disease.”

“The current vaccines provide excellent protection against pneumococcal disease, but only that caused by some of the 90 serotypes, and it is important that we keep a watch on the development of this organism. Our work in describing all known variants will help in that surveillance”

Two vaccines are available. The first, PCV, recognizes seven forms of the capsule and protects against 82% of infections in children under five years of age in the UK. This will soon be given to UK children under the age of two. A second, PPV, recognizes 23 capsule types and protects against 96% of the UK’s strains but is not effective in infants and is mainly used to protect the elderly.

S. pneumoniae usually lives harmlessly in the air passages and in the first year of life most people are likely to have ‘carried’ at least one strain. It is passed from person to person by sneezing and other aerosols. However, it occasionally passes from the airways to invade other tissues. This can lead to any one of a range of diseases including meningitis and infections of the sinuses, ear, lungs and blood. Why it switches to become invasive is not known.

The team sequenced all genes required to make all 90 forms of the capsule (more than 1,800,000 letters of genetic code), determined their function and studied their evolution. The work gives the most complete understanding of capsule production in any bacterial species.

The new vaccine will protect children from many of the most common serotypes but monitoring is needed to check whether other serotypes start to cause some disease. It is known that pneumococci can switch their capsular polysaccharide and so, if an invasive strain changes its coat to a form not recognised by the vaccine, it might start to become more prevalent and cause disease.

The catalogue of capsules from all known strains will help in the development of new techniques for monitoring changes in capsule type so researchers can look out for such capsule switching.

“The new vaccine that will be given to UK children is very effective at protecting against serious pneumococcal disease, but it does not protect against disease caused by the rarer serotypes,” said Brian Spratt, Professor of Microbiology at Imperial College and a co-author of the study. “The catalogue of capsular genes will help us develop better methods to monitor the effect of the vaccine and allow us to see if changes of capsular types or increased prevalence of the rarer serotypes result in any increase in disease by serotypes not included in the vaccine.

“We must always be vigilant to changes in the properties of microorganisms when we introduce new vaccines or antibiotics. This catalogue will help us to develop new tools to keep a check on the march of the pneumococcus and is also going to give us fascinating insights into the evolution of the amazing diversity of capsular genes that can be produced by this pathogen”

Researchers are at pains to point out that current vaccines are enormously successful and vaccination plays an essential in protecting all of us. The pneumococcal vaccines have been shown to be safe and very effective at preventing widespread infections and are expected to greatly reduce serious pneumococcal disease in UK children, as they already have done in the USA.

Current research, such as the capsule study described here, is intended to ensure we keep ahead of organisms such as S. pneumoniae.

Don Powell | EurekAlert!
Further information:
http://www.plosgenetics.org
http://www.sanger.ac.uk

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>