Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moving loons change their tunes

09.03.2006


Jay Mager
A nesting female loon along a swampy lake shore.


Bird experts believed for years that once a bird learned songs, the calls stayed relatively fixed for life. But a new Cornell University study finds that male loons change their tunes when they move into a new territory.

Professor Charles Walcott poses with a toy loon in his office. His latest research provides valuable insights into the loon’s social and territorial behavior, which has implications for conservation efforts.

The study, to be published in the March issue of the international publication Animal Behaviour, reports that while female loons usually disperse over a wide area when ready to breed, males tend to stake claim to a small lake or section of a larger lake near where they were hatched. But rivals often challenge resident males and fight for the territory and the females. The fights can be to the death, with males diving and rising up under a foe in an effort to spear a rival through the chest and heart with his long, pointed beak.



It turns out that the victor gets more than the female -- he gets a new voice: He changes his vocalization, called a yodel, to a new call that is very different from the loser’s yodel.

"It’s as if they are trying to say, ’I’m the new boy on the block,’" said the paper’s lead author, Charles Walcott, professor of neurobiology and behavior at Cornell. "Why that should be important, we really don’t know."

The researchers recorded 527 yodels of 16 male loons on 21 lakes at the Seney National Wildlife Refuge in Seney, Mich., and 3,107 yodels of 82 loons on 63 lakes near Rhinelander, Wis. All the birds were banded as part of well-studied populations.

Yodels of male loons are unique from their neighbors on other lakes and stay stable from year to year. But, of 13 male loons whose yodels were recorded before and after they changed territories, 12 substantially changed their yodels within two years, and the new resident’s yodel changed in ways that increased its difference from that of the previous resident.

"This result implies that loons not only change their vocalizations as the birds change territory, but also that the new owner is familiar with the yodel of the resident that it replaces," said Walcott. And, nobody yet knows whether other species of birds also change their tunes when they move into a new territory.

Some biologists have advocated using sound as a way to identify specific birds, as opposed to netting and tagging birds, which may be traumatic. "But since the loons change their vocalizations, it means you can’t do that," said Walcott.

The research provides valuable insights into the loon’s social and territorial behavior, which has implications for conservation efforts, Walcott noted. With legs near the back of the body, these streamlined, fish-eating water birds are awkward and vulnerable on land, so they prefer to nest in swampy areas with easy access to deep water. But, as more people build houses along lake shores, the loon’s swampy nesting habitats near the shores are increasingly replaced with lawns. As a result, people build nesting platforms for loons on the water. But the loons fight over the platforms, which has led in some areas to too much fighting and not enough breeding. Researchers now recognize the need to coordinate where and how many such platforms are put on a lake.

"By understanding the loons’ social system, we can help people and loons live together," said Walcott.

The study was funded by the Whitehall Foundation, the New Hampshire Charitable Foundation, the National Science Foundation and Cornell. Co-author Walter Piper, a biologist at Chapman University, contributed the behavioral analysis while Walcott and graduate student Jay Mager focused on collecting and analyzing the acoustic data.

Blaine Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>