Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hopkins researchers discover genetic switch that turns off an oxygen-poor cell’s combustion engine

09.03.2006


Finding has potential to limit toxic molecules



Johns Hopkins researchers have discovered a previously unrecognized role played by the gene HIF-1 as it helps cell survive when a lack of oxygen decreases production of an energy-rich molecule called ATP and increases production of toxic molecules. ATP supplies energy the cell needs to perform each of its many chemical reactions and tasks, and in this way acts as the "currency" for the cell’s energy economy.

A report on the work, done with mouse cells genetically altered to lack the HIF-1 gene, appears in the March 8 issue of Cell Metabolism.


A cell’s energy demands are met by two major types of sugar ( glucose) using machines similar to the two types of engines in a hybrid car. One machine, the mitochondrion, is an organelle that breaks down the glucose-using oxygen and produces ATP. The other does the same thing - albeit less efficiently - without using oxygen in a process called glycolysis.

Like the hybrid car, cells use oxygen and the internal combustion engine at higher speeds and rely on an electric engine without need for oxygen consumption at lower speeds. Cells consume glucose through its main energy-producing machine, the mitochondrion, when oxygen is ample. But like the internal combustion engine, this process generates pollutants or toxic oxygen molecules.

At lower oxygen levels, when cells are starved for oxygen - as during exertion or trauma -- the genetic switch that the Hopkins researchers found deliberately shuts off the cell’s mitochondrial combustion engine, which scientists had long - and erroneously -- believed ran down on its own due to lack of oxygen.

"The unexpected discovery is that this genetic switch actively shuts off the mitochondrion under low oxygen conditions, apparently to protect cells from mitochondrial toxic oxygen pollutants," said Chi Van Dang, M.D., Ph.D., professor of medicine, cell biology, oncology and pathology, and vice dean for research at the Johns Hopkins University School of Medicine.

Dang says the switch may be a target for cancer drugs because a cancer cell’s survival depends on it to convert glucose to lactic acid through glycolysis even in the presence of ample oxygen. Disruption of the switch by a drug may cause cancer cells to pollute themselves with toxic oxygen molecules and undergo apoptosis or cell death.

The new finding, made by Hopkins graduate student Jung-whan Kim and the Hopkins team led by Dang, showed that during oxygen deprivation, or hypoxia, the HIF-1 gene cuts the link between two ATP-making biochemical pathways: glycolysis, which makes modest amounts of ATP by breaking down the glucose without using oxygen; and the TCA cycle in the mitochondrion, which normally uses oxygen to produce large amounts of ATP by processing a byproduct of glycolysis.

The disruption of this link blocks the tendency of the mitochondrion to make toxic molecules as it struggles to produce ATP during hypoxia. These toxic molecules, called reactive oxygen species (ROS), damage molecules in the cell and even cause the cell to undergo apoptosis.

The target of HIF-1 is the conversion of pyruvate-the byproduct of glycolysis-into another molecule called acetyl co-enzyme A (acetyl CoA), according to Dang. When oxygen levels are normal, the cell produces acetyl CoA and feeds it into the TCA cycle within the mitochondrion. The mitochondrion then processes acetyl CoA using oxygen to obtain large amounts of ATP.

It was already known that during hypoxia, HIF-1 accelerates the output of ATP by glycolysis, Dang noted. But until now researchers thought that HIF-1 simply turned up glycolysis and let the mitochondrion slow down on its own and produce less ATP, he said. Because the mitochondrion runs on oxygen, it doesn’t work properly in hypoxic conditions, Dang explained. Instead, glycolysis is left to shoulder the burden of making ATP by being prodded into overdrive by HIF-1. And left to itself during hypoxia, the mitochondrion produces reactive oxygen species that threaten the life of the cell.

"But our discovery clearly shows that hypoxia doesn’t simply trigger a passive shutdown of the mitochondrion," said Dang. "Instead, HIF-1 acts as a genetic switch to actively shut down mitochondrial function and prevent the production of reactive oxygen species."

The Hopkins team demonstrated that HIF-1 shuts down the TCA cycle by preventing an enzyme called PDH from converting pyruvate made by glycolysis into acetyl CoA. Specifically, HIF-1 blocks the ability of PDH to make this conversion. HIF-1 does this by activating a protein called PDK, which binds to PDH and prevents it from performing this critical task. This starves the TCA cycle of acetyl CoA and shuts it down.

The Hopkins researchers made their discovery using mouse embryo fibroblast (MEF) cells that were genetically altered to lack HIF-1. When the investigators exposed these so-called HIF-1 null MEFs to hypoxic conditions, the cells were unable to activate PDK to block mitochondrial function. This showed that HIF-1 is required to activate PDK.

The team then genetically engineered HIF-1 null MEFs and forced PDK to work-even in the absence of the HIF-1 gene. The hypoxic cells once again accelerated glycolysis and produced increased amounts of ATP; and with the PDK forced to work, the cells were also able to shut down the TCA cycle. This showed that PDK is the protein activated by HIF-1 to prevent the mitochondrion from producing ROS.

The other authors of this paper include Jung-whan Kim, Irina Tchernyshyov and Gregg L. Semenza, who discovered HIF-1 a decade ago.

Eric Vohr | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>