Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UWE helps fight leukaemia with research into ‘natural killer’ cells


Scientists at the University of the West of England and the Bone Marrow Transplant Unit at the Bristol Children’s Hospital have just won funding for a two-year project aimed at improving the outcome of bone marrow stem-cell transplants in young leukaemia patients.

After a stem cell transplant there is a significant risk that grafted donor white blood cells, known as T-cells, will attack the recipient and may cause a fatal complication called graft versus host disease (GvHD). In Bristol a monoclonal antibody called Campath is used to kill donor T-cells, reducing the chance of GvHD. A side effect of Campath therapy is delayed recovery of the immune system after the transplant which may be associated with leukaemic relapse.

UWE vice-chancellor Sir Howard Newby commented:

“Medical research is important to us all and especially to children. Basic scientific research cannot guarantee cures but in the longer term this important study could help children unfortunate enough to have to undergo a transplant and their families and friends. This award is evidence of the excellence of scientific research in our city.”

The UWE project will monitor the patient’s immune system to see how quickly it recovers following transplantation. In particular, the researchers are focussing on the role played by ‘natural killer T-cells’ (NKT-cells), which form a tiny but important population of white cells present in the blood of normal individuals including stem cell donors. The UWE group hypothesise that NKT-cells play a vital role killing remaining leukaemic cells in the patient’s system after the transplant thus leading to a higher probability of cure.

After an initial year of successful investigations researchers at UWE have discovered that NKT-cells possess the target antigen for Campath, already known to be present on the surface of T-cells. This means that unfortunately NKT-cells are also likely to be removed by Campath treatment. To investigate this important observation further the UWE researchers have just been awarded £97,000 additional funding by the charity CHILDREN with LEUKAEMIA.

Project leader Dr Craig Donaldson explains: “Initially, the treatment with Campath means the graft ‘takes’ better but unfortunately a significant proportion of transplant patients relapse over time and eventually die of leukemia. An important part of this project is to study the rate of repopulation of vital NKT-cells in patients who have received Campath treated grafts in comparison with patients who do not receive Campath treatment.”

“Patients who have consented to take part in this study will have a research blood sample taken at the same as their routine blood tests before transplant and at 3, 6 and 12 months after transplant. When the stem cell donor is a family member they will also be asked whether they wish to participate by consenting to having a research blood sample being taken when they attend the transplant unit for their routine pre-transplant blood check.”

The Bone Marrow Transplant unit based in the Paul O’Gorman wing of the new Bristol Children’s Hospital has an international reputation for developing novel methods of improving the results of stem cell transplants in young patients with leukaemia. Laboratory studies are being carried out at the Centre for Research in Biomedicine at the University of the West of England by Barbara Rees under the supervision of Dr Craig Donaldson and Professor Jill Hows.

Lesley Drake | alfa
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>