Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UWE helps fight leukaemia with research into ‘natural killer’ cells

08.03.2006


Scientists at the University of the West of England and the Bone Marrow Transplant Unit at the Bristol Children’s Hospital have just won funding for a two-year project aimed at improving the outcome of bone marrow stem-cell transplants in young leukaemia patients.



After a stem cell transplant there is a significant risk that grafted donor white blood cells, known as T-cells, will attack the recipient and may cause a fatal complication called graft versus host disease (GvHD). In Bristol a monoclonal antibody called Campath is used to kill donor T-cells, reducing the chance of GvHD. A side effect of Campath therapy is delayed recovery of the immune system after the transplant which may be associated with leukaemic relapse.

UWE vice-chancellor Sir Howard Newby commented:


“Medical research is important to us all and especially to children. Basic scientific research cannot guarantee cures but in the longer term this important study could help children unfortunate enough to have to undergo a transplant and their families and friends. This award is evidence of the excellence of scientific research in our city.”

The UWE project will monitor the patient’s immune system to see how quickly it recovers following transplantation. In particular, the researchers are focussing on the role played by ‘natural killer T-cells’ (NKT-cells), which form a tiny but important population of white cells present in the blood of normal individuals including stem cell donors. The UWE group hypothesise that NKT-cells play a vital role killing remaining leukaemic cells in the patient’s system after the transplant thus leading to a higher probability of cure.

After an initial year of successful investigations researchers at UWE have discovered that NKT-cells possess the target antigen for Campath, already known to be present on the surface of T-cells. This means that unfortunately NKT-cells are also likely to be removed by Campath treatment. To investigate this important observation further the UWE researchers have just been awarded £97,000 additional funding by the charity CHILDREN with LEUKAEMIA.

Project leader Dr Craig Donaldson explains: “Initially, the treatment with Campath means the graft ‘takes’ better but unfortunately a significant proportion of transplant patients relapse over time and eventually die of leukemia. An important part of this project is to study the rate of repopulation of vital NKT-cells in patients who have received Campath treated grafts in comparison with patients who do not receive Campath treatment.”

“Patients who have consented to take part in this study will have a research blood sample taken at the same as their routine blood tests before transplant and at 3, 6 and 12 months after transplant. When the stem cell donor is a family member they will also be asked whether they wish to participate by consenting to having a research blood sample being taken when they attend the transplant unit for their routine pre-transplant blood check.”

The Bone Marrow Transplant unit based in the Paul O’Gorman wing of the new Bristol Children’s Hospital has an international reputation for developing novel methods of improving the results of stem cell transplants in young patients with leukaemia. Laboratory studies are being carried out at the Centre for Research in Biomedicine at the University of the West of England by Barbara Rees under the supervision of Dr Craig Donaldson and Professor Jill Hows.

Lesley Drake | alfa
Further information:
http://www.uwe.ac.uk
http://www.leukaemia.org/

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>