Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential new treatment for Huntington and Parkinson patients ...

08.03.2006


... can inclusions bodies be good news for neurodegenerative diseases?



A potential new treatment for neurodegenerative disorders, which seems to be able to reduce the toxic protein aggregates characteristic of many of these diseases, is published online this week in the journal Proceedings of the National Academy of Sciences. Since it is believed that in most neurodegenerative disorders, like Parkinson and Huntington’s disease (PD and HD respectively), abnormal protein aggregates are major culprits associated with neurodegeneration, this research may have important implications for the lives of thousands of neurodegenerative patients all over the world.

Parkinson’s and Huntington’s diseases are incurable devastating brain disorders that result from the death of brain cells associated with muscle control. Both illnesses, like many other neurodegenerative diseases, result from the formation of misshaped/incorrectly folded versions of normal proteins (all proteins have a specific shape/folding associated with their normal function) that tend to clump together leading to the death of the cells in the neighbourhood.


But the formation of these abnormal proteins is usually not a problem as two effective mechanisms exist to eliminate them: proteasomes, which are multi-protein complexes capable of digesting/cutting the toxic proteins into small pieces to be easily disposed and molecular chaperones, proteins capable of assisting other proteins to “move” into their correct shape/fold. In the cases where abnormal proteins are allowed to accumulate, as it happens in many neurodegenerative diseases, it is believed that these protective systems are malfunctioning. The fact that HD patients are known to have problems with faulty proteasomes supports this hypothesis.

Furthermore, cells with high accumulation of misshaped proteins, including those from PD and HD patients, can also present a cellular structure called inclusion body, which is known to accumulate high quantities of the altered aggregated protein. The role of these inclusions is not clear, and while for a long time they were believed to be toxic and part of the disease process, in recent years, this has been challenged and some researchers now believe that inclusion bodies (also called inclusions) might have a role eliminating the aggregates of toxic proteins. The fact that inclusion bodies are known to contain high quantities of proteasomes further supports this hypothesis. Nevertheless, research in therapies for neurodegenerative diseases seems to continue orientated towards drugs capable of diminish these cellular structures

But Ruth A. Bodner, Tiago Fleming Outeiro, a Portuguese scientist, Aleksey G. Kazantsev and colleagues from the Center for Cancer Research, Massachusetts Institute of Technology, Cambridge and the Mass General Institute for Neurodegenerative Disease, Massachusetts General Hospital, and Harvard Medical School, US had a different idea.

In fact, although much research has been done on compounds capable of diminish the number of inclusions in cells with neurodegenerative mechanisms so far the results have been inconclusive. This observation, together with the emerging believe that inclusions might actually be involved in cells’ protection, made Bodner, Outeiro, Kazantsev and colleagues decide to look instead at substances known to increase the number of inclusions, analysing their effect on neurodegenerative mechanisms. For that they used cellular models of PD and HD consisting of cells, growing in laboratory, which are induced to produce toxic quantities of the protein associated with each of the diseases.

As expected, Bodner, Outeiro, Kazantsev and colleagues found that the compounds that increased the amount of misshaped protein also induced the formation of cellular inclusions. But, more interestingly, was the fact that among those substances that increased inclusions’ numbers, a few were able to revert (and very efficiently) some of the harmful effects induced by the toxic aggregates of misshaped proteins.

In fact, in the cellular model of HD some of the tested substances were able to recover proteasome function - which is crucial to eliminate abnormal proteins in the cells and is known to be defective in HD – while in the PD model the tested substances were capable of diminish the toxicity of the misshaped proteins associated with disease and, in consequence, also cellular death. Furthermore, these beneficial effects correlated directly with the number of inclusions formed, further supporting the idea that inclusions bodies are not necessarily part of the disease, but instead a coing mechanism.

Bodner, Outeiro, Kazantsev and colleagues also had two other very interesting findings. Firstly, the remarkable effectiveness of the substances tested - the most effective compound was able to recover up to 39% of proteasome function in the HD model, while reducing 46% the toxicity associated with the protein aggregates in the model of PD – what raises hopes that these substances might become important new drugs. Secondly, the identification of specific atoms in the tested substances, that, when changed, reduced drastically the substances’ effectiveness. This last observation raises the possibility that different changes in the already identified areas, might, instead, be able to increase even more the effectiveness of the potential drugs.

At the moment the treatments available for neurodegenerative patients are only able to treat the individual symptoms but not the disease. What Bodner, Outeiro, Kazantsev and colleagues’ research might mean is that one day we will be able to delay, or even revert, disease symptoms, giving patients the possibility of enjoying for longer the pleasure of a normal life. Although much more research is necessary in order to confirm these results, Bodner, Outeiro, Kazantsev and colleagues’ new work is undoubtedly exciting news for neurodegenerative patients all over the world.

Piece researched and written by: Catarina Amorim ( catarina.amorim@linacre.ox.ac.uk)

Catarina Amorim | alfa
Further information:
http://www.pnas.org/cgi/content/abstract/0511256103v1

More articles from Life Sciences:

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA's fermi finds possible dark matter ties in andromeda galaxy

22.02.2017 | Physics and Astronomy

Wintering ducks connect isolated wetlands by dispersing plant seeds

22.02.2017 | Life Sciences

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>