Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Big hit on a small scale for black-eyed peas

08.03.2006


What have Black-eyed peas got to do with nanotechnology? As well as sharing their name with a chart-topping U.S. band, Black-eyed peas (also known as Cowpeas) are being used by scientists at the John Innes Centre in Norwich (JIC) [1] to grow virus particles that can be decorated with a chemical turning the particles into a kind of molecular capacitor.



Nanotechnology is the study of tiny structures in the scale of 1/100,000 of the width of a human hair and crosses the disciplines of chemistry, biology and physics. This work has been published in the journal “Small” [2] and is the first piece of nanotechnology from the John Innes Centre. The researchers at the institute are using a harmless virus of Cowpea plants because its tiny size and unique structure makes it an ideal scaffold for decoration with various chemicals to give different characteristics, depending on the application required [3].

“This is an exciting discovery in bionanotechnology, at the interface of chemistry and biology, using plant viruses to produce electronically active nanoparticles of defined size” says Nicole Steinmetz, a PhD student working on the EU-funded project [4] in the group of Dr Dave Evans (Project Leader) in collaboration with Dr. George Lomonossoff in the Department of Biological Chemistry, “Future applications may be in, for example, biosensors, nanoelectronic devices, and electrocatalytic processes.”


Professor Chris Lamb, Director, JIC said "The combination of expertise from different disciplines, in this case plant virology and chemistry, is one of the strengths of the John Innes Centre, with long term fundamental research programmes underpinning exciting innovations that can lead to discoveries such as this."

This project is still in the very early stages, but the scientists hope that this groundbreaking research will lead to the development of the technology for use in medical as well as industrial applications.

[1] The John Innes Centre (JIC), Norwich, UK is an independent, world-leading research centre in plant and microbial sciences. The JIC has over 800 staff and students. JIC carries out high quality fundamental, strategic and applied research to understand how plants and microbes work at the molecular, cellular and genetic levels. The JIC also trains scientists and students, collaborates with many other research laboratories and communicates its science to end-users and the general public. The JIC is grant-aided by the Biotechnology and Biological Sciences Research Council.
[2] This work was published in Small (2006) 4, 530 - 533. (Publishers: Wiley InterScience).
[3] The Cowpea mosaic virus has characteristics of an ideal nanoscaffold/building block. It has a sphere-like structure of 28 nm diameter and its properties are defined. The virus particles can be obtained in gram scale from 1 kg of infected plant leaves. Amino acids on the exterior surface of the virus particle provide sites of attachment for a range of chemicals.
[4] This work is funded by the EU Marie Curie Early Stage Research Training Scheme that provides funding for PhD students in the European Union.

Dr David Evans | alfa
Further information:
http://www.jic.ac.uk

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>