Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Big hit on a small scale for black-eyed peas

08.03.2006


What have Black-eyed peas got to do with nanotechnology? As well as sharing their name with a chart-topping U.S. band, Black-eyed peas (also known as Cowpeas) are being used by scientists at the John Innes Centre in Norwich (JIC) [1] to grow virus particles that can be decorated with a chemical turning the particles into a kind of molecular capacitor.



Nanotechnology is the study of tiny structures in the scale of 1/100,000 of the width of a human hair and crosses the disciplines of chemistry, biology and physics. This work has been published in the journal “Small” [2] and is the first piece of nanotechnology from the John Innes Centre. The researchers at the institute are using a harmless virus of Cowpea plants because its tiny size and unique structure makes it an ideal scaffold for decoration with various chemicals to give different characteristics, depending on the application required [3].

“This is an exciting discovery in bionanotechnology, at the interface of chemistry and biology, using plant viruses to produce electronically active nanoparticles of defined size” says Nicole Steinmetz, a PhD student working on the EU-funded project [4] in the group of Dr Dave Evans (Project Leader) in collaboration with Dr. George Lomonossoff in the Department of Biological Chemistry, “Future applications may be in, for example, biosensors, nanoelectronic devices, and electrocatalytic processes.”


Professor Chris Lamb, Director, JIC said "The combination of expertise from different disciplines, in this case plant virology and chemistry, is one of the strengths of the John Innes Centre, with long term fundamental research programmes underpinning exciting innovations that can lead to discoveries such as this."

This project is still in the very early stages, but the scientists hope that this groundbreaking research will lead to the development of the technology for use in medical as well as industrial applications.

[1] The John Innes Centre (JIC), Norwich, UK is an independent, world-leading research centre in plant and microbial sciences. The JIC has over 800 staff and students. JIC carries out high quality fundamental, strategic and applied research to understand how plants and microbes work at the molecular, cellular and genetic levels. The JIC also trains scientists and students, collaborates with many other research laboratories and communicates its science to end-users and the general public. The JIC is grant-aided by the Biotechnology and Biological Sciences Research Council.
[2] This work was published in Small (2006) 4, 530 - 533. (Publishers: Wiley InterScience).
[3] The Cowpea mosaic virus has characteristics of an ideal nanoscaffold/building block. It has a sphere-like structure of 28 nm diameter and its properties are defined. The virus particles can be obtained in gram scale from 1 kg of infected plant leaves. Amino acids on the exterior surface of the virus particle provide sites of attachment for a range of chemicals.
[4] This work is funded by the EU Marie Curie Early Stage Research Training Scheme that provides funding for PhD students in the European Union.

Dr David Evans | alfa
Further information:
http://www.jic.ac.uk

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Novel chip-based gene expression tool analyzes RNA quickly and accurately

18.01.2018 | Medical Engineering

Scientists on the road to discovering impact of urban road dust

18.01.2018 | Ecology, The Environment and Conservation

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>