Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Big hit on a small scale for black-eyed peas

08.03.2006


What have Black-eyed peas got to do with nanotechnology? As well as sharing their name with a chart-topping U.S. band, Black-eyed peas (also known as Cowpeas) are being used by scientists at the John Innes Centre in Norwich (JIC) [1] to grow virus particles that can be decorated with a chemical turning the particles into a kind of molecular capacitor.



Nanotechnology is the study of tiny structures in the scale of 1/100,000 of the width of a human hair and crosses the disciplines of chemistry, biology and physics. This work has been published in the journal “Small” [2] and is the first piece of nanotechnology from the John Innes Centre. The researchers at the institute are using a harmless virus of Cowpea plants because its tiny size and unique structure makes it an ideal scaffold for decoration with various chemicals to give different characteristics, depending on the application required [3].

“This is an exciting discovery in bionanotechnology, at the interface of chemistry and biology, using plant viruses to produce electronically active nanoparticles of defined size” says Nicole Steinmetz, a PhD student working on the EU-funded project [4] in the group of Dr Dave Evans (Project Leader) in collaboration with Dr. George Lomonossoff in the Department of Biological Chemistry, “Future applications may be in, for example, biosensors, nanoelectronic devices, and electrocatalytic processes.”


Professor Chris Lamb, Director, JIC said "The combination of expertise from different disciplines, in this case plant virology and chemistry, is one of the strengths of the John Innes Centre, with long term fundamental research programmes underpinning exciting innovations that can lead to discoveries such as this."

This project is still in the very early stages, but the scientists hope that this groundbreaking research will lead to the development of the technology for use in medical as well as industrial applications.

[1] The John Innes Centre (JIC), Norwich, UK is an independent, world-leading research centre in plant and microbial sciences. The JIC has over 800 staff and students. JIC carries out high quality fundamental, strategic and applied research to understand how plants and microbes work at the molecular, cellular and genetic levels. The JIC also trains scientists and students, collaborates with many other research laboratories and communicates its science to end-users and the general public. The JIC is grant-aided by the Biotechnology and Biological Sciences Research Council.
[2] This work was published in Small (2006) 4, 530 - 533. (Publishers: Wiley InterScience).
[3] The Cowpea mosaic virus has characteristics of an ideal nanoscaffold/building block. It has a sphere-like structure of 28 nm diameter and its properties are defined. The virus particles can be obtained in gram scale from 1 kg of infected plant leaves. Amino acids on the exterior surface of the virus particle provide sites of attachment for a range of chemicals.
[4] This work is funded by the EU Marie Curie Early Stage Research Training Scheme that provides funding for PhD students in the European Union.

Dr David Evans | alfa
Further information:
http://www.jic.ac.uk

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>