Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT research holds promise for Huntington’s treatment

08.03.2006


Researchers at MIT and Harvard Medical School have identified a compound that interferes with the pathogenic effects of Huntington’s disease, a discovery that could lead to development of a new treatment for the disease.



There is no cure for Huntington’s, a neurodegenerative disorder that now afflicts 30,000 Americans, with another 150,000 at risk. The fatal disease, which is genetically inherited, usually strikes in midlife and causes uncontrolled movements, loss of cognitive function and emotional disturbance.

"There are now some drugs that can help with the symptoms, but we can’t stop the course of the disease or its onset," said Ruth Bodner, lead author on a paper appearing online the week of Mar. 6 in the Proceedings of the National Academy of Sciences (PNAS). Bodner is a postdoctoral fellow in MIT’s Center for Cancer Research.


The compound developed by Bodner and others in the laboratories of MIT Professor of Biology David Housman, Harvard Medical School Assistant Professor Aleksey Kazantsev and Harvard Medical School Professor Bradley Hyman might lead to a drug that could help stop the deadly sequence of cellular events that Huntington’s unleashes.

"Depending on its target, any one compound will probably block only a subset of the pathogenic effects," Bodner said.

Huntington’s disease is caused by misfolded proteins, called huntingtin proteins, that aggregate and eventually form large clump-like "inclusions." The disease is characterized by degeneration in the striatum, an area associated with motor and learning functions, and the cortex. The proteins may disrupt the function of cellular structures known as proteasomes, which perform a "trash can" function for the cell -- disposing of cellular proteins that are misfolded or no longer needed, said Bodner.

Without a functional proteasome, those cellular proteins accumulate, poisoning brain cells and impairing patients’ motor and cognitive function.

Until now, most researchers looking for Huntington’s treatments have focused on compounds that prevent or reverse the aggregation of huntingtin proteins. However, recent evidence suggests that the largest inclusions may not necessarily be harmful and could in fact be protective, said Bodner. So, the MIT and Harvard scientists decided to look for compounds that actually promote the formation of large inclusions.

The highest concentration of protein inclusions was found when the researchers applied a compound they called B2 to cells cultivated in the laboratory. The compound also had a strong protective effect against proteasome disruption, thus blocking one of the toxic effects of the huntingtin protein.

The B2 compound also promoted large inclusions and showed a protective effect in a cellular model of Parkinson’s disease, another neurodegenerative disorder caused by misfolded proteins.

In Parkinson’s disease, the mutant proteins destroy dopamine-producing cells in the substantia nigra. Normally, the dopamine transmits signals to the corpus striatum, allowing muscles to make smooth, controlled movements. When those dopamine-producing cells die, Parkinson’s patients exhibit the tremors that are characteristic of the disease.

The researchers are now working on finding a more potent version of the compound that could be tested in mice.

This work was funded by the Hereditary Disease Foundation, Massachusetts Biotechnology Research Council, National Institutes of Health, American Parkinson’s Disease Association and the MassGeneral Institute for Neurodegenerative Disease.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>