Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein receptor cools passion of ’kiss and run’ nerve cells

07.03.2006


A new subtlety in the process of how the body’s nervous system relays information may hinge on how "wet" the "kiss" is when one neuron fires a packet of neurotransmitter across a synapse to a receptive nerve cell.



A team of neuroscientists led by University of Illinois at Chicago biology professor Simon Alford report the finding in the March 14 issue of the Proceedings of the National Academy of Sciences.

"Until recently, the neuroscience field was solidly behind the idea that these little packets, or vesicles, either released all or none of their neurotransmitter into the synaptic cleft," said Alford. "We’ve identified a specific molecular mechanism that targets the machinery that causes the fusion process and found that instead of an all-or-none release, the vesicle just kisses the cell’s presynaptic membrane. Neuroscientists call it ’kiss and run.’ When it does it, our lab has now shown that only a little bit of neurotransmitter is released.


"This is important for the cell because it implies that we can change the degree of information that’s passed through the synapse every time it’s fired," said Alford.

The process involves a receptor protein on a pre-synaptic nerve cell -- the side that fires the packet of neurotransmitter -- that is affected by 5-hydroxytryptamine, or 5-HT, a body chemical often associated with mood. When 5-HT binds to this cell receptor, it activates something called a G protein that is made of two subunits -- one called alpha, the other beta-gamma. When these subunits are released, they activate the next step in a chain of events that move signal information through the nerve cell.

Alford’s lab previously discovered that the beta-gamma subunit affects the molecular machinery that causes release of neurotransmitter -- the amino acid glutamate.

"It’s very fast," said Alford. "You turn on a G protein, and it immediately targets the mechanism to modify release."

On the receiving cell, the post-synaptic side, there is a range of protein receptors that vary in sensitivity to the amount of neurotransmitter that’s released. Some scientists think if the release of neurotransmitter can be controlled to take into account the sensitivity and roles played by post-synaptic receptors, new drugs for treating a range of neurological conditions might be developed.

Alford thinks that controlling agent may turn out to be 5-HT.

"When you release 5-HT onto the terminal (pre-synaptic) cell, you can switch the relative activation of different receptors on the post-synaptic cell," he said. "You don’t just change the amount of neurotransmitter released, but you change what’s activated -- the balance of different things that are activated in the next cell down the chain. In a sense, it’s like you’ve turned a channel."

Heidi Hamm, professor and chair of pharmacology at Vanderbilt University, is a co-author of the PNAS paper. Other authors are Huzefa Photowala, Trillium Blackmer and Eric Schwartz, all former graduate students or post-doctoral researchers in Alford’s UIC laboratory.

Paul Francuch | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>