Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Protein receptor cools passion of ’kiss and run’ nerve cells


A new subtlety in the process of how the body’s nervous system relays information may hinge on how "wet" the "kiss" is when one neuron fires a packet of neurotransmitter across a synapse to a receptive nerve cell.

A team of neuroscientists led by University of Illinois at Chicago biology professor Simon Alford report the finding in the March 14 issue of the Proceedings of the National Academy of Sciences.

"Until recently, the neuroscience field was solidly behind the idea that these little packets, or vesicles, either released all or none of their neurotransmitter into the synaptic cleft," said Alford. "We’ve identified a specific molecular mechanism that targets the machinery that causes the fusion process and found that instead of an all-or-none release, the vesicle just kisses the cell’s presynaptic membrane. Neuroscientists call it ’kiss and run.’ When it does it, our lab has now shown that only a little bit of neurotransmitter is released.

"This is important for the cell because it implies that we can change the degree of information that’s passed through the synapse every time it’s fired," said Alford.

The process involves a receptor protein on a pre-synaptic nerve cell -- the side that fires the packet of neurotransmitter -- that is affected by 5-hydroxytryptamine, or 5-HT, a body chemical often associated with mood. When 5-HT binds to this cell receptor, it activates something called a G protein that is made of two subunits -- one called alpha, the other beta-gamma. When these subunits are released, they activate the next step in a chain of events that move signal information through the nerve cell.

Alford’s lab previously discovered that the beta-gamma subunit affects the molecular machinery that causes release of neurotransmitter -- the amino acid glutamate.

"It’s very fast," said Alford. "You turn on a G protein, and it immediately targets the mechanism to modify release."

On the receiving cell, the post-synaptic side, there is a range of protein receptors that vary in sensitivity to the amount of neurotransmitter that’s released. Some scientists think if the release of neurotransmitter can be controlled to take into account the sensitivity and roles played by post-synaptic receptors, new drugs for treating a range of neurological conditions might be developed.

Alford thinks that controlling agent may turn out to be 5-HT.

"When you release 5-HT onto the terminal (pre-synaptic) cell, you can switch the relative activation of different receptors on the post-synaptic cell," he said. "You don’t just change the amount of neurotransmitter released, but you change what’s activated -- the balance of different things that are activated in the next cell down the chain. In a sense, it’s like you’ve turned a channel."

Heidi Hamm, professor and chair of pharmacology at Vanderbilt University, is a co-author of the PNAS paper. Other authors are Huzefa Photowala, Trillium Blackmer and Eric Schwartz, all former graduate students or post-doctoral researchers in Alford’s UIC laboratory.

Paul Francuch | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>