Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein receptor cools passion of ’kiss and run’ nerve cells

07.03.2006


A new subtlety in the process of how the body’s nervous system relays information may hinge on how "wet" the "kiss" is when one neuron fires a packet of neurotransmitter across a synapse to a receptive nerve cell.



A team of neuroscientists led by University of Illinois at Chicago biology professor Simon Alford report the finding in the March 14 issue of the Proceedings of the National Academy of Sciences.

"Until recently, the neuroscience field was solidly behind the idea that these little packets, or vesicles, either released all or none of their neurotransmitter into the synaptic cleft," said Alford. "We’ve identified a specific molecular mechanism that targets the machinery that causes the fusion process and found that instead of an all-or-none release, the vesicle just kisses the cell’s presynaptic membrane. Neuroscientists call it ’kiss and run.’ When it does it, our lab has now shown that only a little bit of neurotransmitter is released.


"This is important for the cell because it implies that we can change the degree of information that’s passed through the synapse every time it’s fired," said Alford.

The process involves a receptor protein on a pre-synaptic nerve cell -- the side that fires the packet of neurotransmitter -- that is affected by 5-hydroxytryptamine, or 5-HT, a body chemical often associated with mood. When 5-HT binds to this cell receptor, it activates something called a G protein that is made of two subunits -- one called alpha, the other beta-gamma. When these subunits are released, they activate the next step in a chain of events that move signal information through the nerve cell.

Alford’s lab previously discovered that the beta-gamma subunit affects the molecular machinery that causes release of neurotransmitter -- the amino acid glutamate.

"It’s very fast," said Alford. "You turn on a G protein, and it immediately targets the mechanism to modify release."

On the receiving cell, the post-synaptic side, there is a range of protein receptors that vary in sensitivity to the amount of neurotransmitter that’s released. Some scientists think if the release of neurotransmitter can be controlled to take into account the sensitivity and roles played by post-synaptic receptors, new drugs for treating a range of neurological conditions might be developed.

Alford thinks that controlling agent may turn out to be 5-HT.

"When you release 5-HT onto the terminal (pre-synaptic) cell, you can switch the relative activation of different receptors on the post-synaptic cell," he said. "You don’t just change the amount of neurotransmitter released, but you change what’s activated -- the balance of different things that are activated in the next cell down the chain. In a sense, it’s like you’ve turned a channel."

Heidi Hamm, professor and chair of pharmacology at Vanderbilt University, is a co-author of the PNAS paper. Other authors are Huzefa Photowala, Trillium Blackmer and Eric Schwartz, all former graduate students or post-doctoral researchers in Alford’s UIC laboratory.

Paul Francuch | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>