Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mispairs in genetic material make protein synthesis more efficient


So-called wobble pairs make RNA more reactive, enhancing protein production

The wealth of information contained in a strand of genetic material boils down to sequences of matched pairs of nucleotides that cellular machinery decodes to construct proteins.

Writing today in The Proceedings of the National Academy of Sciences, a University of Wisconsin-Madison bacteriologist reveals that mispaired nucleotides in transfer RNA actually make the molecule more adroit, enhancing its ability to build proteins. The paper also illustrates the dynamic nature of genetic material, which is not flat, like an illustration in a textbook, but twists and bends as it interacts with cellular machinery.

The mispairs, also called "wobble pairs," do not bind together as tightly as matched pairs bind, making transfer RNA "a compressed spring ready to be sprung," according to William McClain, a professor of bacteriology in the UW-Madison’s College of Agricultural and Life Sciences and the author of the PNAS paper. He notes that specific transfer RNA mispairs, which likely originally arose through natural mutation, are highly conserved across all kingdoms of life, providing evidence that they play an important role in making the molecule more reactive.

Genetic information is encoded in DNA, which is made up of matched base pairs of adenine and thymine, and guanine and cytosine - commonly denoted with the letters A, T, G and C. Cellular machinery transcribes the information from DNA into RNA - where the base uracil replaces thymine -- and then translates the coded data into proteins, which form the building blocks of life.

Scientists have long known that transfer RNA - which adds amino acids to a growing chain during protein synthesis - holds a surprising secret when it comes to its base pairs: occasionally, instead of the expected A-U or G-C pairs, there exists instead a mispair of A-C or G-U. However, the role and importance of mispairs has never been well understood, says McClain.

McClain, who has spent his career investigating how transfer RNA selects specific amino acids during protein synthesis, was curious about how mispairs affect the function of RNA. In the study reported in PNAS, he altered the position of a G-U mispair in a bacterial plasmid - by literally moving the mispair up and down the molecule’s cloverleaf structure -- and demonstrated that the mutation increases the ability of the RNA to accept amino acids and improves its efficiency at moving through the ribosome, the cellular organelle where translation occurs. In fact, removing the mispair or repairing it to make it a correct matched pair inactivated the molecule completely.

"The wobble pairs fit together at an angle and the bonds are much less stable than matched pairs," McClain explains. "This makes the molecule more likely to come undone, and therefore more reactive."

This is crucial because DNA and RNA molecules are not the static, flat images that are depicted in textbooks, McClain notes. "They flex, move and come apart all the time," he says. "And mispairs promote this movement. My interpretation is that nature conserves these mispairs because they enhance protein synthesis."

McClain adds that he views his work as both an intellectual challenge as well as "tremendous fun."

"What biologists want to do is understand a cell in terms of all of its workings," he says, "just as when you take your car to a mechanic they have to know how it’s made. I want to know how a molecule is made, and how its parts come together."

William McClain | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>