Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Training improves sound localization in ferrets

07.03.2006


Upon hearing the blare of a siren, you would quickly home in on the source and direction of the sound and take the necessary action, or precaution, such as pulling your car over or foregoing crossing the street until the ambulance has cleared. Mammals rely on sound localization skills to communicate, escape threats, and forage, among many other tasks. All through development the adult brain retains the capacity to rewire the networks that underlie these skills but it’s not clear which tasks benefit from plasticity or how the brain engenders this flexibility. In a study published in the open access journal PLoS Biology, Oliver Kacelnik, Andrew King, and colleagues showed by manipulating the hearing of adult ferrets that ferrets with obstructed hearing can quickly adapt to altered auditory cues when trained to do so in order to perform a necessary task. Their findings reveal that the frequency of the training was crucial in boosting the rate and extent of their improvement.


Measuring the accuracy with which ferrets can localize sound. (Photo: King et al.)



The brain processes spatial cues in the sound waves that enter each ear to localize sound and interprets sound on the horizontal plane by using disparities in how the sound reaches each ear, called interaural time differences and interaural level differences. Changes in level at different frequencies can reveal the source’s elevation.

To study adaptive hearing in an adult mammal, the authors blocked the left ears of ferrets with specially outfitted earplugs and measured their ability to localize sounds in the horizontal plane. They trained ferrets to approach a sound source to receive the reward. When the ferrets licked a waterspout, they triggered a burst of noise from one of twelve speakers. They were presented with sound bursts lasting either 1,000 or 40 milliseconds. Without earplugs, ferrets had no trouble localizing the sounds. They were slightly less adept at localizing the brief bursts. With earplugs, performance dropped considerably for both bursts. Ferrets had the most trouble with sounds coming for their left (obstructed) side, but errors increased significantly for all 12 sound sources. The authors retested one group of earplugged animals every six days to see if they could use the altered cues to recover their localization skills. By three weeks, the animals localized sound coming from the right side about as well as they had before the ear was plugged. The speed and accuracy with which the ferrets recovered their localization abilities depended on training, with more complete recovery when the animals received more frequent training.


To test the possibility that visual cues might help to boost auditory plasticity, the authors compared the earplugs’ behavioral effects on two groups of ferrets: one blind since infancy, and another with normal vision. Both groups could localize about the same without earplugs, made more errors after receiving the plug, and then steadily improved with the periodic retesting. These results show not only that the ferrets could be trained to reprocess abnormal localization cues but also that they could do so without visual cues. Then, by training another group of ferrets to localize both auditory and visual stimuli before inserting the earplug, the authors show that sound localization depends "exclusively on auditory training" and does not involve "a visual recalibration of auditory space." Furthermore, adaptation did not depend on error feedback, since rewards were not based on performance.

After removal of the earplugs, ferrets made errors reflecting a small bias toward the previously plugged ear: they initially processed the cues as if the ear was still plugged. This aftereffect, though transient, indicates that the adaptive response relies in part on reinterpreting the relationship between binaural cues and location. However, compensation for the earplug-disrupted binaural cues mainly involved the animals’ learning to make use of other cues that were less distorted by the earplug, including low-frequency interaural time differences, and spectral cues provided by the unobstructed ear.

Altogether, these results show that the adult auditory system can adapt to abnormal spatial cues and can do so rapidly with intensive training. By recording brain activity as animals perform the tasks described here, future studies can shed light on the brain regions responsible for this plasticity. Whatever the mechanism, the finding that plasticity follows targeted, intensive training suggests that patients with hearing disorders might benefit from a similar strategy--providing more evidence that an old brain can sometimes learn new tricks.

Paul Ocampo | EurekAlert!
Further information:
http://www.plosbiology.org

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>