Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Johns Hopkins scientists exploit novel route to reverse enlarged hearts in obese mice

07.03.2006


Nerve growth factor makes end run around leptin, a brain hormone linked to appetite regulation



Working on genetically engineered obese mice with seriously thickened hearts, a condition call cardiac hypertrophy, scientists at Johns Hopkins have used a nerve protection and growth factor on the heart to mimic the activity of the brain hormone leptin, dramatically reducing the size of the heart muscle.

Leptin is a protein hormone made by fat cells that signals the brain to stop eating. Alterations in the leptin-making gene may create leptin deficiency linked to obesity and other defects in weight regulation.


By injecting so-called ciliary neurotrophic factor (CNTF) into mice that were either deficient in or resistant to leptin, the researchers reduced the animals’ diseased and thickened heart muscle walls by as much as a third and the overall size of the left ventricle, the main pumping chamber, up to 41 percent, restoring the heart’s architecture toward normal.

Enlarged hearts lead to heart failure and death. Results of the study, supported in part by the National Institutes of Health, are to be published in the March 6 issue of the Proceedings of the National Academy of Sciences.

"These findings suggest there’s a novel brain-signaling pathway in obesity-related heart failure and have therapeutic implications for patients with some forms of obesity-related cardiovascular disease," says study senior author Joshua M. Hare, M.D., a professor and medical director of the heart failure and cardiac transplantation programs at The Johns Hopkins University School of Medicine and its Heart Institute.

Most obesity in people is associated with an inability to use leptin made naturally in the body, says Hare, who also is director of the cardiovascular section of Hopkins’ Institute for Cellular Engineering.

"We knew that leptin supplements wouldn’t address obesity-linked heart disease, but reasoned that CNTF might be a way to get around leptin resistance by activating a related signaling pathway with similar effects on body weight and metabolism," he says.

Hare and his colleagues tested the idea on mice with left ventricular hypertrophy (LVH), a condition in which the left ventricle expands and stiffens, preventing proper blood flow to the body. In humans, obesity is a major risk factor for LVH, which results from stress on the heart. As the heart muscle is worked harder, it bulks up.

"Our finding that CNTF causes LVH to regress not only in leptin-deficient animals but also in those lacking a functional leptin receptor establishes the existence of a new pathway to help regulate LVH," Hare says.

For the study, Hare and colleagues first examined whether CNTF receptors were present and functional in the heart muscles by staining heart muscle cells with a chemical that would highlight the receptors when viewed under a high-powered microscope. These tests showed that CNTF receptors were located on the cells’ surfaces.

Next, they randomly assigned a set of leptin-deficient mice into three groups: a third received daily abdominal injections of CNTF, a third were fed a calorie-restricted diet, and a third ate as much as they wanted. The researchers used the same three approaches plus leptin supplements on another group of leptin-resistant mice.

Ultrasound exams of the hearts after four weeks showed that CNTF decreased the thickness of the wall dividing the heart chambers by as much as 27 percent, decreased the thickness of the wall at the back of the heart by as much as 29 percent and overall volume of the left ventricle by as much as 41 percent. As expected, leptin supplements did not change left ventricular wall thickness.

CNTF-treated mice also showed reduced heart-cell width, a direct measure of the amount of hypertrophy.

More research is to be done before CNTF can be used to treat patients, Hare says, as people can develop antibodies to CNTF. The scientists next plan to test CNTF in other animal models of hypertrophy not related to obesity.

David March | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>