Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Johns Hopkins scientists exploit novel route to reverse enlarged hearts in obese mice

07.03.2006


Nerve growth factor makes end run around leptin, a brain hormone linked to appetite regulation



Working on genetically engineered obese mice with seriously thickened hearts, a condition call cardiac hypertrophy, scientists at Johns Hopkins have used a nerve protection and growth factor on the heart to mimic the activity of the brain hormone leptin, dramatically reducing the size of the heart muscle.

Leptin is a protein hormone made by fat cells that signals the brain to stop eating. Alterations in the leptin-making gene may create leptin deficiency linked to obesity and other defects in weight regulation.


By injecting so-called ciliary neurotrophic factor (CNTF) into mice that were either deficient in or resistant to leptin, the researchers reduced the animals’ diseased and thickened heart muscle walls by as much as a third and the overall size of the left ventricle, the main pumping chamber, up to 41 percent, restoring the heart’s architecture toward normal.

Enlarged hearts lead to heart failure and death. Results of the study, supported in part by the National Institutes of Health, are to be published in the March 6 issue of the Proceedings of the National Academy of Sciences.

"These findings suggest there’s a novel brain-signaling pathway in obesity-related heart failure and have therapeutic implications for patients with some forms of obesity-related cardiovascular disease," says study senior author Joshua M. Hare, M.D., a professor and medical director of the heart failure and cardiac transplantation programs at The Johns Hopkins University School of Medicine and its Heart Institute.

Most obesity in people is associated with an inability to use leptin made naturally in the body, says Hare, who also is director of the cardiovascular section of Hopkins’ Institute for Cellular Engineering.

"We knew that leptin supplements wouldn’t address obesity-linked heart disease, but reasoned that CNTF might be a way to get around leptin resistance by activating a related signaling pathway with similar effects on body weight and metabolism," he says.

Hare and his colleagues tested the idea on mice with left ventricular hypertrophy (LVH), a condition in which the left ventricle expands and stiffens, preventing proper blood flow to the body. In humans, obesity is a major risk factor for LVH, which results from stress on the heart. As the heart muscle is worked harder, it bulks up.

"Our finding that CNTF causes LVH to regress not only in leptin-deficient animals but also in those lacking a functional leptin receptor establishes the existence of a new pathway to help regulate LVH," Hare says.

For the study, Hare and colleagues first examined whether CNTF receptors were present and functional in the heart muscles by staining heart muscle cells with a chemical that would highlight the receptors when viewed under a high-powered microscope. These tests showed that CNTF receptors were located on the cells’ surfaces.

Next, they randomly assigned a set of leptin-deficient mice into three groups: a third received daily abdominal injections of CNTF, a third were fed a calorie-restricted diet, and a third ate as much as they wanted. The researchers used the same three approaches plus leptin supplements on another group of leptin-resistant mice.

Ultrasound exams of the hearts after four weeks showed that CNTF decreased the thickness of the wall dividing the heart chambers by as much as 27 percent, decreased the thickness of the wall at the back of the heart by as much as 29 percent and overall volume of the left ventricle by as much as 41 percent. As expected, leptin supplements did not change left ventricular wall thickness.

CNTF-treated mice also showed reduced heart-cell width, a direct measure of the amount of hypertrophy.

More research is to be done before CNTF can be used to treat patients, Hare says, as people can develop antibodies to CNTF. The scientists next plan to test CNTF in other animal models of hypertrophy not related to obesity.

David March | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>