Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered killer cell fights cancer

07.03.2006


A mouse immune cell that plays dual roles as both assassin and messenger, normally the job of two separate cells, has been discovered by an international team of researchers from the United States and France. The discovery has triggered a race among scientists to find a human equivalent of the multitasking cell, which could one day be a target for therapies that seek out and destroy cancer.



"In the same way that intelligence and law enforcement agencies can face deadly threats together instead of separately, this one cell combines the ability to kill foreign pathogens and distribute information about that experience," says Drew Pardoll, M.D., Ph.D., the Seraph Professor of Oncology at the Johns Hopkins Kimmel Cancer Center.

"We think this hybrid cell speeds up immune reactions and makes the system more efficient," adds Pardoll, whose findings are reported in the February issue of Nature Medicine.


The Hopkins investigators speculate that the hybrid, dubbed "IKDC" for interferon-producing killer dendritic cell, has been missed by cancer biologists because it is rare, making up one-tenth of cells in the spleen with similar features, such as other dendritic cells, according to Frank Housseau, Ph.D., research associate at Hopkins’ Kimmel Cancer Center and member of Pardoll’s immunology laboratory.

Most of the immune system typically works through a web of cross-talk and signaling among a variety of cells. One of the first immune cells that invading bacteria or cancer cells - both of which carry antigens that alert the immune system - may encounter is a natural killer (NK) cell. As its name implies, NK cells deliver a deadly blow by poking holes in the invader’s outer membrane. Then, NK cells secrete molecules that reach other immune cells, including dendritic cells, known as the main messenger for the immune system. Dendritic cells spread "look here" information about foreign invaders to other immune cells, but do not actually kill the invaders.

It was while investigating a particular type of dendritic cell that Housseau noticed the outer membranes of these cells were studded with what were supposed to be hallmarks of NK cells, akin to finding feathers on a dog.

"We thought we were looking at dendritic cells, but we were wrong - they were some type of NK-dendritic cell blend," says Housseau. The blended cell turned out to be a newly identified actor on the immune system stage that retains all the molecular characteristics of both NK and dendritic cells.

Probing further, Housseau scoured the surface of IKDCs to create a sketch of its molecular profile. He found that it produces both types of interferon proteins, normally secreted independently by NK and dendritic cells. He also found both NK and dendriticlike molecules on the surface of IKDCs. Housseau calculated that they account for about 10 percent of conventional dendritic cells in the spleen.

IKDCs begin their lives behaving like an NK cell. After the cell encounters a pathogen, the cell switches roles from killer to dendriticlike messenger, and, according to the researchers, the swap occurs only once. Then, the cell dies and is replenished by the bone marrow.

"When an IKDC cell switches to its messenger function, the transformation is quite astonishing," says Pardoll. The cell sprouts long, hairy tentacles called dendrites. It uses its "arms" to increase the amount of surface area it reaches to communicate and interact with other immune cells.

In the next step of their investigation, the scientists tracked the location of fluorescent-tagged IKDCs and their corresponding stage of transformation after infecting mice with bacteria called listeria. In assassin-mode, the IKDCs were found in the blood, lining of the gut, liver and other organs - all areas where there is close contact with environmental pathogens. "Here, IKDCs are ready to sense invaders and spring into action," says Housseau.

Then, the group tracked the cells to the main messenger center of the immune system - the lymph nodes. Here, they found approximately 35 percent of the original group of IKDCs now secreting communication molecules signaling a switch to messenger-mode.

Simultaneously, Housseau’s colleagues in France, led by Laurence Zitvogel at the Institut Gustave Roussy, tested whether IKDCs are culprits in killing cancer by injecting mice with a cancer drug called Gleevec, which blocks an abnormal protein produced by cancer cells, and a growth factor for NK cells. The drug-growth factor combo served as a lure, leading the IKDCs to tumors implanted in the mice. The results were that tumors shrunk in mice, which received injections of IKDCs, but not in those receiving conventional NK cells only. Evidence from the shrunken tumors revealed certain "cell-killing" proteins that could be traced to IKDCs. These results are published separately in Nature Medicine.

Housseau’s group is conducting further studies to verify the role of IKDC cells in infection and cancer. Meanwhile, the group is profiling IKDC genes to find a specific marker that could help them identify a human counterpart.

Vanessa Wasta | EurekAlert!
Further information:
http://www.hopkinskimmelcancercenter.org
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>