Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lymphocytes From A Risk Group

07.03.2006


The thyroid gland is very sensitive to ionizing radiation. The number of patients with thyroid gland cancer is particularly high among those who endured the Chernobyl catastrophe in childhood. Ultrasonic scanning and bioptic tests investigations are usually used for early detection of thyroid gland cancer but researchers do not stop the search of more efficient methods.



They deal with molecular markers of cancer in order to discover mutation of the genes participating in carcinogenesis. Unfortunately, the existing methods for search of mutant genes are labour-intensive and expensive, therefore they do not fit for mass use. However, there is no need to seek changes particularly in oncogenes. In case of malignant transformation, mutation frequency increases in all cells of the organism.

Thus, European researchers have discovered that people with increased frequency of chromosomal abnormalities in lymphocytes of blood more often fall ill with cancer. According to Japanese and Russian researchers’ data, the patients suffering from larynx cancer and some other malignant growths, even before treatment starts experience increase of quantity of lymphocytes with T-cell receptor (TCR) genes mutations. These mutations are easy to discover via a special immunological test, which was used by the Obninsk physicians for search of mutant lymphocytes in blood of patients with thyroid gland cancer.


The investigation involved venous blood of oncological patients (who had not undergone treatment yet) and that of healthy donors. Double increase of mutant lymphocyte frequency (more than 6.2 mutants per 10,000 cells) as compared to the background group was discovered with 37 percent of cancer patients, and this result cannot be considered accidental. Increased mutation frequency may be a hereditary trait - predisposition to genome instability, when probability of malignant transformation rises significantly. The same thing happens in case of some hereditary diseases (for example, Bloom’s syndrome, Fanconi anemia). Among the mutations discovered with patients with such syndromes, T-cell receptor mutations occupied a noticeable place.

After the Chernobyl catastrophe, a vast territory was exposed to contamination by radionuclids, and its inhabitants – to action of low ionizing radiation doses. Ionizing radiation leads to genetic instability. Among participants to the experiment, who lived in contaminated territories, the frequency of TCR-mutation made 45 percent. There is other indirect evidence as well that genotoxic influence, including ionizing radiation increase TCR-mutation frequency.

Therefore, a large number of mutant T-lymphocytes with a person means that their owner has become a prey to irradiation or his/her genome is non-stable for some reason. In this case, the patient should at least be attributed to a risk group, and it should be kept in mind that TCR-mutations are often found with oncological patients prior to treatment . This circumstance will help discover cancer at the very early stage.

Increased frequency of mutations in patient’s lymphocytes is the evidence of risk. But, unfortunately, the lack of mutation does not mean anything. Therefore, the researchers are going to continue the search for other molecular markers of cancer development. The more tests are used, the higher probability is to discover the risk.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>